procedural updating

This commit is contained in:
Trance-0
2025-02-11 11:16:11 -06:00
parent 0b1ea591c1
commit 05e62532da
2 changed files with 56 additions and 15 deletions

View File

@@ -6,12 +6,12 @@
#### Definition of differentiability in complex variables
Suppose $G$ is an open subset of $\mathbb{C}$.
**Suppose $G$ is an open subset of $\mathbb{C}$**.
A function $f:G\to \mathbb{C}$ is differentiable at $\zeta_0\in G$ if
$$
\lim_{\zeta\to \zeta_0}\frac{f(\zeta)-f(\zeta_0)}{\zeta-\zeta_0}
f'(\zeta_0)=\lim_{\zeta\to \zeta_0}\frac{f(\zeta)-f(\zeta_0)}{\zeta-\zeta_0}
$$
exists.
@@ -32,6 +32,8 @@ $$
\lim_{(x,y)\to (x_0,y_0)}\frac{|R(x,y)|}{|(x,y)-(x_0,y_0)|}=\lim_{(x,y)\to (x_0,y_0)}\frac{|R(x,y)|}{\sqrt{(x-x_0)^2+(y-y_0)^2}}=0.
$$
_$R(x,y)$ is the immediate result of mean value theorem applied to $u$ at $(x_0,y_0)$_.
> Theorem from 4111?
>
> If $u$ is differentiable at $(x_0,y_0)$, then $\frac{\partial u}{\partial x}(x_0,y_0)$ and $\frac{\partial u}{\partial y}(x_0,y_0)$ exist.
@@ -55,11 +57,25 @@ $$
So $\lim_{(x,y)\to (x_0,y_0)}\frac{|R(x,y)|}{\sqrt{(x-x_0)^2+(y-y_0)^2}}=0$ if and only if $\lim_{(x,y)\to (x_0,y_0)}\frac{a(x-x_0)}{\sqrt{(x-x_0)^2+(y-y_0)^2}}=0$ and $\lim_{(x,y)\to (x_0,y_0)}\frac{b(y-y_0)}{\sqrt{(x-x_0)^2+(y-y_0)^2}}=0$.
On the imaginary part, we have
On the imaginary part, we proceed similarly. Define
$$
S(x,y)=v(x,y)-v(x_0,y_0)-\frac{\partial v}{\partial x}(x_0,y_0)(x-x_0)-\frac{\partial v}{\partial y}(x_0,y_0)(y-y_0).
$$
Then the differentiability of $v$ at $(x_0,y_0)$ guarantees that
$$
\lim_{(x,y)\to (x_0,y_0)}\frac{|S(x,y)|}{\sqrt{(x-x_0)^2+(y-y_0)^2}}=0.
$$
Moreover, considering the definition of the complex derivative of $f=u+iv$, if we approach $\zeta_0=x_0+iy_0$ along different directions we obtain
$$
f'(\zeta_0)=\frac{\partial u}{\partial x}(x_0,y_0)+i\frac{\partial v}{\partial x}(x_0,y_0)
=\frac{\partial v}{\partial y}(x_0,y_0)-i\frac{\partial u}{\partial y}(x_0,y_0).
$$
Equating the real and imaginary parts of these two expressions forces
$$
\frac{\partial u}{\partial x}(x_0,y_0)=\frac{\partial v}{\partial y}(x_0,y_0),\quad \frac{\partial u}{\partial y}(x_0,y_0)=-\frac{\partial v}{\partial x}(x_0,y_0).
$$
...
Conclusion (The Cauchy-Riemann equations):
#### Theorem 2.6 (The Cauchy-Riemann equations):
If $f=u+iv$ is complex differentiable at $\zeta_0\in G$, then $u$ and $v$ are real differentiable at $(x_0,y_0)$ and
@@ -67,6 +83,12 @@ $$
\frac{\partial u}{\partial x}(x_0,y_0)=\frac{\partial v}{\partial y}(x_0,y_0),\quad \frac{\partial u}{\partial y}(x_0,y_0)=-\frac{\partial v}{\partial x}(x_0,y_0).
$$
> Some missing details:
>
> The Cauchy-Riemann equations are necessary and sufficient for the differentiability of $f$ at $\zeta_0$.
>
> This states that a function $f$ is **complex differentiable** at $\zeta_0$ if and only if $u$ and $v$ are real differentiable at $(x_0,y_0)$ and the Cauchy-Riemann equations hold at $(x_0,y_0)$. That is $f'(\zeta_0)=\frac{\partial u}{\partial x}(x_0,y_0)+i\frac{\partial v}{\partial x}(x_0,y_0)=\frac{\partial v}{\partial y}(x_0,y_0)-i\frac{\partial u}{\partial y}(x_0,y_0)$.
And $u$ and $v$ have continuous partial derivatives at $(x_0,y_0)$.
And let $c=\frac{\partial u}{\partial x}(x_0,y_0)$ and $d=\frac{\partial v}{\partial x}(x_0,y_0)$.
@@ -75,7 +97,7 @@ And let $c=\frac{\partial u}{\partial x}(x_0,y_0)$ and $d=\frac{\partial v}{\par
### Holomorphic Functions
#### Definition of holomorphic functions
#### Definition 2.8 (Holomorphic functions)
A function $f:G\to \mathbb{C}$ is holomorphic (or analytic) at $\zeta_0\in G$ if it is complex differentiable at $\zeta_0$.
@@ -97,9 +119,31 @@ So polynomials are holomorphic on $\mathbb{C}$.
So rational functions $p/q$ are holomorphic on $\mathbb{C}\setminus\{z\in \mathbb{C}:q(z)=0\}$.
#### Definition 2.9 (Complex partial differential operators)
Let $f:G\to \mathbb{C}$, $f=u+iv$, be a function defined on an open set $G\subset \mathbb{C}$.
Define:
$$
\frac{\partial}{\partial x}f=\frac{\partial u}{\partial x}+i\frac{\partial v}{\partial x},\quad \frac{\partial}{\partial y}f=\frac{\partial u}{\partial y}+i\frac{\partial v}{\partial y}.
$$
And
$$
\frac{\partial}{\partial \zeta}f=\frac{1}{2}\left(\frac{\partial}{\partial x}-i\frac{\partial}{\partial y}\right)f,\quad \frac{\partial}{\partial \bar{\zeta}}f=\frac{1}{2}\left(\frac{\partial}{\partial x}+i\frac{\partial}{\partial y}\right)f.
$$
This definition of partial differential operators on complex functions is consistent with the definition of partial differential operators on real functions.
$$
\frac{\partial}{\partial x}f=\frac{\partial}{\partial \zeta}f+\frac{\partial}{\partial \bar{\zeta}}f,\quad \frac{\partial}{\partial y}f=i\left(\frac{\partial}{\partial \zeta}f-\frac{\partial}{\partial \bar{\zeta}}f\right).
$$
### Curves in $\mathbb{C}$
#### Definition of curves in $\mathbb{C}$
#### Definition 2.11 (Curves in $\mathbb{C}$)
A curve $\gamma$ in $G\subset \mathbb{C}$ is a continuous map of an interval $I$ into $G$. We say $\gamma$ is differentiable if $\forall t_0\in I$, $\gamma'(t_0)=\lim_{t\to t_0}\frac{\gamma(t)-\gamma(t_0)}{t-t_0}$ exists.

View File

@@ -58,8 +58,7 @@ $$
>
> A function $g(h)$ is $o(h)$ if $\lim_{h\to 0}\frac{g(h)}{h}=0$.
>
> <!---TODO: check after lecture-->
> $f$ is differentiable if and only if $f(z+h)=f(z)+f'(z)h+\frac{1}{2}h^2f''(z)+o(h^3)$ as $h\to 0$.
> $f$ is differentiable if and only if $f(z+h)=f(z)+f'(z)h+\frac{1}{2}h^2f''(z)+o(h^3)$ as $h\to 0$. (By Taylor expansion)
Since $f$ is holomorphic at $\gamma(t_0)=\zeta_0$, we have
@@ -88,13 +87,13 @@ $$
EOP
#### Definition of conformal function
#### Definition 2.12 (Conformal function)
A function $f:G\to \mathbb{C}$ is called conformal if it preserves the angle between two curves.
#### Theorem of conformal function
#### Theorem 2.13 (Conformal function)
If $f:G\to \mathbb{C}$ is holomorphic function on open set $G\subset \mathbb{C}$ and $\gamma_1,\gamma_2$ are regular curves in $G$ with $\gamma_1(t_0)=\gamma_2(t_0)=\zeta_0$ for some $t_0\in I_1\cap I_2$, and $f'(\zeta_0)\neq 0$, then $f$ is conformal at $\zeta_0$.
If $f:G\to \mathbb{C}$ is conformal at $\zeta_0\in G$, then $f$ is holomorphic at $\zeta_0$ and $f'(\zeta_0)\neq 0$.
Example:
@@ -104,8 +103,6 @@ $$
is not conformal at $z=0$ because $f'(0)=0$.
#### Lemma of conformal function
Suppose $f$ is real differentiable, let $a=\frac{\partial f}{\partial \zeta}(\zeta_0)$, $b=\frac{\partial f}{\partial \overline{\zeta}}(\zeta_0)$.