procedural updating
This commit is contained in:
@@ -6,12 +6,12 @@
|
||||
|
||||
#### Definition of differentiability in complex variables
|
||||
|
||||
Suppose $G$ is an open subset of $\mathbb{C}$.
|
||||
**Suppose $G$ is an open subset of $\mathbb{C}$**.
|
||||
|
||||
A function $f:G\to \mathbb{C}$ is differentiable at $\zeta_0\in G$ if
|
||||
|
||||
$$
|
||||
\lim_{\zeta\to \zeta_0}\frac{f(\zeta)-f(\zeta_0)}{\zeta-\zeta_0}
|
||||
f'(\zeta_0)=\lim_{\zeta\to \zeta_0}\frac{f(\zeta)-f(\zeta_0)}{\zeta-\zeta_0}
|
||||
$$
|
||||
|
||||
exists.
|
||||
@@ -32,6 +32,8 @@ $$
|
||||
\lim_{(x,y)\to (x_0,y_0)}\frac{|R(x,y)|}{|(x,y)-(x_0,y_0)|}=\lim_{(x,y)\to (x_0,y_0)}\frac{|R(x,y)|}{\sqrt{(x-x_0)^2+(y-y_0)^2}}=0.
|
||||
$$
|
||||
|
||||
_$R(x,y)$ is the immediate result of mean value theorem applied to $u$ at $(x_0,y_0)$_.
|
||||
|
||||
> Theorem from 4111?
|
||||
>
|
||||
> If $u$ is differentiable at $(x_0,y_0)$, then $\frac{\partial u}{\partial x}(x_0,y_0)$ and $\frac{\partial u}{\partial y}(x_0,y_0)$ exist.
|
||||
@@ -55,11 +57,25 @@ $$
|
||||
|
||||
So $\lim_{(x,y)\to (x_0,y_0)}\frac{|R(x,y)|}{\sqrt{(x-x_0)^2+(y-y_0)^2}}=0$ if and only if $\lim_{(x,y)\to (x_0,y_0)}\frac{a(x-x_0)}{\sqrt{(x-x_0)^2+(y-y_0)^2}}=0$ and $\lim_{(x,y)\to (x_0,y_0)}\frac{b(y-y_0)}{\sqrt{(x-x_0)^2+(y-y_0)^2}}=0$.
|
||||
|
||||
On the imaginary part, we have
|
||||
On the imaginary part, we proceed similarly. Define
|
||||
$$
|
||||
S(x,y)=v(x,y)-v(x_0,y_0)-\frac{\partial v}{\partial x}(x_0,y_0)(x-x_0)-\frac{\partial v}{\partial y}(x_0,y_0)(y-y_0).
|
||||
$$
|
||||
Then the differentiability of $v$ at $(x_0,y_0)$ guarantees that
|
||||
$$
|
||||
\lim_{(x,y)\to (x_0,y_0)}\frac{|S(x,y)|}{\sqrt{(x-x_0)^2+(y-y_0)^2}}=0.
|
||||
$$
|
||||
Moreover, considering the definition of the complex derivative of $f=u+iv$, if we approach $\zeta_0=x_0+iy_0$ along different directions we obtain
|
||||
$$
|
||||
f'(\zeta_0)=\frac{\partial u}{\partial x}(x_0,y_0)+i\frac{\partial v}{\partial x}(x_0,y_0)
|
||||
=\frac{\partial v}{\partial y}(x_0,y_0)-i\frac{\partial u}{\partial y}(x_0,y_0).
|
||||
$$
|
||||
Equating the real and imaginary parts of these two expressions forces
|
||||
$$
|
||||
\frac{\partial u}{\partial x}(x_0,y_0)=\frac{\partial v}{\partial y}(x_0,y_0),\quad \frac{\partial u}{\partial y}(x_0,y_0)=-\frac{\partial v}{\partial x}(x_0,y_0).
|
||||
$$
|
||||
|
||||
...
|
||||
|
||||
Conclusion (The Cauchy-Riemann equations):
|
||||
#### Theorem 2.6 (The Cauchy-Riemann equations):
|
||||
|
||||
If $f=u+iv$ is complex differentiable at $\zeta_0\in G$, then $u$ and $v$ are real differentiable at $(x_0,y_0)$ and
|
||||
|
||||
@@ -67,6 +83,12 @@ $$
|
||||
\frac{\partial u}{\partial x}(x_0,y_0)=\frac{\partial v}{\partial y}(x_0,y_0),\quad \frac{\partial u}{\partial y}(x_0,y_0)=-\frac{\partial v}{\partial x}(x_0,y_0).
|
||||
$$
|
||||
|
||||
> Some missing details:
|
||||
>
|
||||
> The Cauchy-Riemann equations are necessary and sufficient for the differentiability of $f$ at $\zeta_0$.
|
||||
>
|
||||
> This states that a function $f$ is **complex differentiable** at $\zeta_0$ if and only if $u$ and $v$ are real differentiable at $(x_0,y_0)$ and the Cauchy-Riemann equations hold at $(x_0,y_0)$. That is $f'(\zeta_0)=\frac{\partial u}{\partial x}(x_0,y_0)+i\frac{\partial v}{\partial x}(x_0,y_0)=\frac{\partial v}{\partial y}(x_0,y_0)-i\frac{\partial u}{\partial y}(x_0,y_0)$.
|
||||
|
||||
And $u$ and $v$ have continuous partial derivatives at $(x_0,y_0)$.
|
||||
|
||||
And let $c=\frac{\partial u}{\partial x}(x_0,y_0)$ and $d=\frac{\partial v}{\partial x}(x_0,y_0)$.
|
||||
@@ -75,7 +97,7 @@ And let $c=\frac{\partial u}{\partial x}(x_0,y_0)$ and $d=\frac{\partial v}{\par
|
||||
|
||||
### Holomorphic Functions
|
||||
|
||||
#### Definition of holomorphic functions
|
||||
#### Definition 2.8 (Holomorphic functions)
|
||||
|
||||
A function $f:G\to \mathbb{C}$ is holomorphic (or analytic) at $\zeta_0\in G$ if it is complex differentiable at $\zeta_0$.
|
||||
|
||||
@@ -97,9 +119,31 @@ So polynomials are holomorphic on $\mathbb{C}$.
|
||||
|
||||
So rational functions $p/q$ are holomorphic on $\mathbb{C}\setminus\{z\in \mathbb{C}:q(z)=0\}$.
|
||||
|
||||
#### Definition 2.9 (Complex partial differential operators)
|
||||
|
||||
Let $f:G\to \mathbb{C}$, $f=u+iv$, be a function defined on an open set $G\subset \mathbb{C}$.
|
||||
|
||||
Define:
|
||||
|
||||
$$
|
||||
\frac{\partial}{\partial x}f=\frac{\partial u}{\partial x}+i\frac{\partial v}{\partial x},\quad \frac{\partial}{\partial y}f=\frac{\partial u}{\partial y}+i\frac{\partial v}{\partial y}.
|
||||
$$
|
||||
|
||||
And
|
||||
|
||||
$$
|
||||
\frac{\partial}{\partial \zeta}f=\frac{1}{2}\left(\frac{\partial}{\partial x}-i\frac{\partial}{\partial y}\right)f,\quad \frac{\partial}{\partial \bar{\zeta}}f=\frac{1}{2}\left(\frac{\partial}{\partial x}+i\frac{\partial}{\partial y}\right)f.
|
||||
$$
|
||||
|
||||
This definition of partial differential operators on complex functions is consistent with the definition of partial differential operators on real functions.
|
||||
|
||||
$$
|
||||
\frac{\partial}{\partial x}f=\frac{\partial}{\partial \zeta}f+\frac{\partial}{\partial \bar{\zeta}}f,\quad \frac{\partial}{\partial y}f=i\left(\frac{\partial}{\partial \zeta}f-\frac{\partial}{\partial \bar{\zeta}}f\right).
|
||||
$$
|
||||
|
||||
### Curves in $\mathbb{C}$
|
||||
|
||||
#### Definition of curves in $\mathbb{C}$
|
||||
#### Definition 2.11 (Curves in $\mathbb{C}$)
|
||||
|
||||
A curve $\gamma$ in $G\subset \mathbb{C}$ is a continuous map of an interval $I$ into $G$. We say $\gamma$ is differentiable if $\forall t_0\in I$, $\gamma'(t_0)=\lim_{t\to t_0}\frac{\gamma(t)-\gamma(t_0)}{t-t_0}$ exists.
|
||||
|
||||
|
||||
@@ -58,8 +58,7 @@ $$
|
||||
>
|
||||
> A function $g(h)$ is $o(h)$ if $\lim_{h\to 0}\frac{g(h)}{h}=0$.
|
||||
>
|
||||
> <!---TODO: check after lecture-->
|
||||
> $f$ is differentiable if and only if $f(z+h)=f(z)+f'(z)h+\frac{1}{2}h^2f''(z)+o(h^3)$ as $h\to 0$.
|
||||
> $f$ is differentiable if and only if $f(z+h)=f(z)+f'(z)h+\frac{1}{2}h^2f''(z)+o(h^3)$ as $h\to 0$. (By Taylor expansion)
|
||||
|
||||
Since $f$ is holomorphic at $\gamma(t_0)=\zeta_0$, we have
|
||||
|
||||
@@ -88,13 +87,13 @@ $$
|
||||
|
||||
EOP
|
||||
|
||||
#### Definition of conformal function
|
||||
#### Definition 2.12 (Conformal function)
|
||||
|
||||
A function $f:G\to \mathbb{C}$ is called conformal if it preserves the angle between two curves.
|
||||
|
||||
#### Theorem of conformal function
|
||||
#### Theorem 2.13 (Conformal function)
|
||||
|
||||
If $f:G\to \mathbb{C}$ is holomorphic function on open set $G\subset \mathbb{C}$ and $\gamma_1,\gamma_2$ are regular curves in $G$ with $\gamma_1(t_0)=\gamma_2(t_0)=\zeta_0$ for some $t_0\in I_1\cap I_2$, and $f'(\zeta_0)\neq 0$, then $f$ is conformal at $\zeta_0$.
|
||||
If $f:G\to \mathbb{C}$ is conformal at $\zeta_0\in G$, then $f$ is holomorphic at $\zeta_0$ and $f'(\zeta_0)\neq 0$.
|
||||
|
||||
Example:
|
||||
|
||||
@@ -104,8 +103,6 @@ $$
|
||||
|
||||
is not conformal at $z=0$ because $f'(0)=0$.
|
||||
|
||||
|
||||
|
||||
#### Lemma of conformal function
|
||||
|
||||
Suppose $f$ is real differentiable, let $a=\frac{\partial f}{\partial \zeta}(\zeta_0)$, $b=\frac{\partial f}{\partial \overline{\zeta}}(\zeta_0)$.
|
||||
|
||||
Reference in New Issue
Block a user