Create Math401_N3.md

This commit is contained in:
Trance-0
2025-04-06 18:08:44 -05:00
parent cc2688605a
commit 235a25bb2f

View File

@@ -0,0 +1,62 @@
# Coding and Information Theory Crash Course
## Encoding
Let $A,B$ be two finite sets with size $a,b$ respectively.
Let $S(A)=\bigcup_{r=1}^{\infty}A^r$ be the word semigroup generated by $A$.
A one-to-one mapping $f:A\to S(B)$ is called a code with message alphabet $A$ and encoded alphabet $B$.
Example:
- $A=$ RGB color space
- $B=\{0\sim 255\}$
- $f:A\to B^n$ is a code
For example, $f(white)=(255,255,255)$, $f(green)=(0,255,0)$
### Uniquely decipherable codes
A code $f:A\to S(B)$ is called uniquely decipherable if the extension code
$$
\tilde{f}:S(A)\to S(B)=f(a_1)f(a_2)\cdots f(a_n)
$$
is one-to-one.
Example:
- $A=\{a,b,c,d\}$
- $B=\{0,1\}$
- $f(a)=00$, $f(b)=01$, $f(c)=10$, $f(d)=11$
is uniquely decipherable.
- $f(a)=0$, $f(b)=1$, $f(c)=10$, $f(d)=11$
is not uniquely decipherable.
Since $\tilde{f}(ba)=10=\tilde{f}(c)$
#### Irreducible codes
A code $f:A\to S(B)$ is called irreducible if for any $x,y\in A$, $f(y)\neq f(x)w$ for some $w\in S(B)$.