Update Math4121_L35.md

This commit is contained in:
Zheyuan Wu
2025-04-16 10:52:38 -05:00
parent 529277b6f2
commit 256de2ac32

View File

@@ -89,5 +89,26 @@ $$
Proof:
First to show the limit exists almost everywhere. It suffices to show
$$
\mathcal{U}=\{x\in E: f_n(x) \text{ is unbounded}\}
$$
has measure 0.
Let $\epsilon>0$ and write
$$
U=\bigcup_{n=1}^{\infty} E_n
$$
where $E_n=\{x\in E: |f_n(x)|\geq \epsilon\}$.
Then $U\subseteq \mathcal{U}$ and $m(U)<\epsilon$.
CONTINUE NEXT TIME.
QED