Update Math4121_L35.md
This commit is contained in:
@@ -89,5 +89,26 @@ $$
|
||||
|
||||
Proof:
|
||||
|
||||
First to show the limit exists almost everywhere. It suffices to show
|
||||
|
||||
$$
|
||||
\mathcal{U}=\{x\in E: f_n(x) \text{ is unbounded}\}
|
||||
$$
|
||||
|
||||
has measure 0.
|
||||
|
||||
Let $\epsilon>0$ and write
|
||||
|
||||
$$
|
||||
U=\bigcup_{n=1}^{\infty} E_n
|
||||
$$
|
||||
|
||||
where $E_n=\{x\in E: |f_n(x)|\geq \epsilon\}$.
|
||||
|
||||
Then $U\subseteq \mathcal{U}$ and $m(U)<\epsilon$.
|
||||
|
||||
|
||||
CONTINUE NEXT TIME.
|
||||
|
||||
QED
|
||||
|
||||
|
||||
Reference in New Issue
Block a user