fix bad substitution
This commit is contained in:
17
Jenkinsfile
vendored
17
Jenkinsfile
vendored
@@ -29,13 +29,16 @@ pipeline {
|
||||
}
|
||||
stage('Deploy') {
|
||||
steps {
|
||||
echo "Deploying docker image ${registry}:v${version}.${env.BUILD_ID}"
|
||||
echo "Stopping existing container"
|
||||
sh 'docker stop notenextra || true'
|
||||
echo "Removing existing container"
|
||||
sh 'docker rm notenextra || true'
|
||||
echo "Running new docker container"
|
||||
sh 'docker run -d -p 13000:3000 --name notenextra ${registry}:v${version}.${env.BUILD_ID}'
|
||||
script {
|
||||
def imageTag = "${registry}:v${version}.${env.BUILD_ID}"
|
||||
echo "Deploying docker image ${imageTag}"
|
||||
echo "Stopping existing container"
|
||||
sh 'docker stop notenextra-jenkins || true'
|
||||
echo "Removing existing container"
|
||||
sh 'docker rm notenextra-jenkins || true'
|
||||
echo "Running new docker container"
|
||||
sh "docker run -d -p 13000:3000 --name notenextra-jenkins ${imageTag}"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -67,6 +67,27 @@ By definition $\frac{1}{n}m(E_n)=\int_E \frac{1}{n}\chi_{E_n} \, dm \leq \int_E
|
||||
|
||||
Therefore, $m(E_n)=0$ for all $n$.
|
||||
|
||||
Now $U=\{x\in E: f(x)>0\}=\bigcup_{n=1}^{\infty} E_n$.
|
||||
Now $U=\{x\in E: f(x)>0\}=\bigcup_{n=1}^{\infty} E_n$, and $E_n\subseteq E_{n+1}$ for all $n$.
|
||||
|
||||
Therefore, $m(U)=m(\bigcup_{n=1}^{\infty} E_n)=\lim_{n\to\infty} m(E_n)=0$.
|
||||
|
||||
QED
|
||||
|
||||
### Convergence Theorems
|
||||
|
||||
When does $\lim_{n\to\infty} \int_E f_n \, dm = \int_E \lim_{n\to\infty} f_n \, dm$?
|
||||
|
||||
#### Theorem 6.14 Monotone Convergence Theorem
|
||||
|
||||
Let $\{f_n\}$ be a monotone increasing sequence of measurable functions on $E$ and $f_n\to f$ almost everywhere on $E$. ($f_n(x)\leq f_{n+1}(x)$ for all $x\in E$ and $n$)
|
||||
|
||||
If there exists $A>0$ such that $\left|\int_E f_n \, dm\right|\leq A$ for all $n\in \mathbb{N}$, then $f(x)=\lim_{n\to\infty} f_n(x)$ exists for almost every $x\in E$ and it is integrable on $E$ and
|
||||
|
||||
$$
|
||||
\int_E f \, dm = \lim_{n\to\infty} \int_E f_n \, dm
|
||||
$$
|
||||
|
||||
Proof:
|
||||
|
||||
QED
|
||||
|
||||
|
||||
Reference in New Issue
Block a user