Update Math4121_L35.md
This commit is contained in:
@@ -89,5 +89,26 @@ $$
|
|||||||
|
|
||||||
Proof:
|
Proof:
|
||||||
|
|
||||||
|
First to show the limit exists almost everywhere. It suffices to show
|
||||||
|
|
||||||
|
$$
|
||||||
|
\mathcal{U}=\{x\in E: f_n(x) \text{ is unbounded}\}
|
||||||
|
$$
|
||||||
|
|
||||||
|
has measure 0.
|
||||||
|
|
||||||
|
Let $\epsilon>0$ and write
|
||||||
|
|
||||||
|
$$
|
||||||
|
U=\bigcup_{n=1}^{\infty} E_n
|
||||||
|
$$
|
||||||
|
|
||||||
|
where $E_n=\{x\in E: |f_n(x)|\geq \epsilon\}$.
|
||||||
|
|
||||||
|
Then $U\subseteq \mathcal{U}$ and $m(U)<\epsilon$.
|
||||||
|
|
||||||
|
|
||||||
|
CONTINUE NEXT TIME.
|
||||||
|
|
||||||
QED
|
QED
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user