Update Math4121_L17.md
This commit is contained in:
@@ -1 +1,68 @@
|
||||
# Lecture 17
|
||||
# Math4121 Lecture 17
|
||||
|
||||
## Continue on Last lecture
|
||||
|
||||
### Countability
|
||||
|
||||
#### Theorem: $\mathbb{R}$ is uncountable
|
||||
|
||||
We denote the cardinality of $\mathbb{N}$ be $\aleph_0$
|
||||
|
||||
We denote the cardinality of $\mathbb{R}$ be $\mathfrak{c}$
|
||||
|
||||
> Continuum Hypothesis:
|
||||
>
|
||||
> If there a cardinality between $\aleph_0$ and $\mathfrak{c}$
|
||||
|
||||
### Power set
|
||||
|
||||
#### Definition: Power set
|
||||
|
||||
Given a set $S$, the power set of $S$, denoted $\mathscr{P}(S)$ or $2^S$, is the collection of all subsets of $S$.
|
||||
|
||||
#### Theorem 3.10 (Cantor's Theorem)
|
||||
|
||||
Cardinality of $2^S$ is not equal to the cardinality of $S$.
|
||||
|
||||
Proof:
|
||||
|
||||
Assume they have the same cardinality, then $\exists \psi: S \to 2^X$ which is one-to-one and onto. (this function returns a subset of $S$)
|
||||
|
||||
$$
|
||||
T=\{a\in S:a\notin \psi (a)\}\subseteq S
|
||||
$$
|
||||
|
||||
Thus, $\exists b\in S$ such that $\psi(b)=T$.
|
||||
|
||||
If $b\in T$, then by definition of $T$, $b \notin \psi(b)$, but $\psi(b) = T$, which is a contradiction. So $b\notin T$.
|
||||
|
||||
If $b \notin T$, then $b \in \psi(b)$, which is also a contradiction since $b\in T$. Therefore, $2^S$ cannot have the same cardinality as $S$.
|
||||
|
||||
EOP
|
||||
|
||||
### Back to Hankel's Conjecture
|
||||
|
||||
$$
|
||||
T=\bigcup_{n=1}^\infty \left(a_n-\frac{\epsilon}{2^{n+1}},a_n+\frac{\epsilon}{2^{n+1}}\right)
|
||||
$$
|
||||
|
||||
is small
|
||||
|
||||
What is the structure of $S=[0,1]\setminus T$? (or Sparse)
|
||||
|
||||
- Cardinality (countable)
|
||||
- Topologically (not dense)
|
||||
- Measure, for now meaning small or zero outer content.
|
||||
|
||||
## Chapter 4: Nowhere Dense SEts and the Problem with the Fundamental Theorem of Calculus
|
||||
|
||||
### Nowhere Dense Sets
|
||||
|
||||
#### Definition: Nowhere Dense Set
|
||||
|
||||
A set $S$ is **nowhere dense** if there are no open intervals in which $S$ is dense.
|
||||
|
||||
#### Corollary: A set is nowhere dense if and only if $S$ contains no open intervals
|
||||
|
||||
$S'$ contains no open intervals
|
||||
|
||||
|
||||
Reference in New Issue
Block a user