Update Math416_L25.md
This commit is contained in:
@@ -93,3 +93,56 @@ $$
|
||||
$$
|
||||
|
||||
QED
|
||||
|
||||
## Application ot valuating definite integrals
|
||||
|
||||
Idea:
|
||||
|
||||
It is easy to evaluate intervals around closed contours.
|
||||
|
||||
Choose contour so one side (where you want to integrate).
|
||||
|
||||
Handle the other side by:
|
||||
|
||||
- Symmetry
|
||||
- length * supremum of absolute value of integrand
|
||||
- Bound function by another function whose integral goes to zero.
|
||||
|
||||
Example:
|
||||
|
||||
Evaluate $\int_0^\infty \frac{\sin x}{x}dx$.
|
||||
|
||||
On the contour $\gamma(t)$ be the semicircle in the upper half plane removed the origin.
|
||||
|
||||
Then let $f(z)=\frac{e^{iz}}{z}=\frac{\cos z+i\sin z}{z}$, by the Cauchy's theorem,
|
||||
|
||||
$$
|
||||
\int_\gamma f(z)dz=0
|
||||
$$
|
||||
|
||||
So $\frac{\sin z}{z}=0$ on $\gamma$.
|
||||
|
||||
If $x\in \mathbb{R}$, $f(x)=\frac{e^{ix}}{x}=\frac{\cos x+i\sin x}{x}$.
|
||||
|
||||
On the real axis,
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\int_{-R}^{-\epsilon}+\int_\epsilon^R f(x)dx&=\int_{-R}^{-\epsilon}\frac{e^{ix}}{x}dx+\int_\epsilon^R \frac{e^{ix}}{x}dx\\
|
||||
&=\int_{-R}^{-\epsilon}\frac{\cos x+i\sin x}{x}dx+\int_\epsilon^R \frac{\cos x+i\sin x}{x}dx\\
|
||||
&=\int_{-R}^{-\epsilon}\frac{\cos x}{x}dx+i\int_{-R}^{-\epsilon}\frac{\sin x}{x}dx+\int_\epsilon^R \frac{\cos x}{x}dx+i\int_\epsilon^R \frac{\sin x}{x}dx\\
|
||||
&=2i\int_0^\infty \frac{\sin x}{x}dx
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
For the clockwise semi-circle around the origin,
|
||||
|
||||
$$
|
||||
\int_{S_\epsilon} f(z)dz=\int_{S_\epsilon}\frac{e^{iz}}{z}dz
|
||||
$$
|
||||
|
||||
let $\gamma(t)=\epsilon e^{-it}$, $t\in[-\pi,0]$.
|
||||
|
||||
Then $\gamma'(t)=-i\epsilon e^{-it}$,
|
||||
|
||||
CONTINUE NEXT TIME.
|
||||
|
||||
Reference in New Issue
Block a user