This commit is contained in:
Zheyuan Wu
2024-11-19 17:02:27 -06:00
parent 14095ae355
commit 626b05ba2f
2 changed files with 13 additions and 3 deletions

View File

@@ -45,7 +45,7 @@ Let $\{X_n\}_n$ and $\{Y_n\}_n$ be probability ensembles (separate of dist over
$\{X_n\}_n$ and $\{Y_n\}_n$ are computationally **in-distinguishable** if for all non-uniform p.p.t adversary $D$ ("distinguishers")
$$
|P[x\gets X_n:D(x)=1]-P[y\gets Y_n:d(y)=1]|<\varepsilon(n)
|P[x\gets X_n:D(x)=1]-P[y\gets Y_n:D(y)=1]|<\varepsilon(n)
$$
this basically means that the probability of finding any pattern in the two array is negligible.
@@ -53,7 +53,7 @@ this basically means that the probability of finding any pattern in the two arra
If there is a $D$ such that
$$
|P[x\gets X_n:D(x)=1]-P[y\gets Y_n:d(y)=1]|\geq \mu(n)
|P[x\gets X_n:D(x)=1]-P[y\gets Y_n:D(y)=1]|\geq \mu(n)
$$
then $D$ is distinguishing with probability $\mu(n)$
@@ -98,7 +98,7 @@ Example:
Building distinguishers
1. $X_n$: always outputs $0^n$, $D$: [outputs $1$ is $t=0^n$]
1. $X_n$: always outputs $0^n$, $D$: [outputs $1$ if $t=0^n$]
$$
\vert P[t\gets X_n:D(t)=1]-P[t\gets U_n:D(t)=1]\vert=1-\frac{1}{2^n}\approx 1
$$

View File

@@ -0,0 +1,10 @@
# CSE 442T
## Course Description
This course is an introduction to the theory of cryptography. Topics include:
One-way functions, trapdoor functions, and hash functions.
Instructor: