fix typo
This commit is contained in:
@@ -45,7 +45,7 @@ Let $\{X_n\}_n$ and $\{Y_n\}_n$ be probability ensembles (separate of dist over
|
||||
$\{X_n\}_n$ and $\{Y_n\}_n$ are computationally **in-distinguishable** if for all non-uniform p.p.t adversary $D$ ("distinguishers")
|
||||
|
||||
$$
|
||||
|P[x\gets X_n:D(x)=1]-P[y\gets Y_n:d(y)=1]|<\varepsilon(n)
|
||||
|P[x\gets X_n:D(x)=1]-P[y\gets Y_n:D(y)=1]|<\varepsilon(n)
|
||||
$$
|
||||
|
||||
this basically means that the probability of finding any pattern in the two array is negligible.
|
||||
@@ -53,7 +53,7 @@ this basically means that the probability of finding any pattern in the two arra
|
||||
If there is a $D$ such that
|
||||
|
||||
$$
|
||||
|P[x\gets X_n:D(x)=1]-P[y\gets Y_n:d(y)=1]|\geq \mu(n)
|
||||
|P[x\gets X_n:D(x)=1]-P[y\gets Y_n:D(y)=1]|\geq \mu(n)
|
||||
$$
|
||||
|
||||
then $D$ is distinguishing with probability $\mu(n)$
|
||||
@@ -98,7 +98,7 @@ Example:
|
||||
|
||||
Building distinguishers
|
||||
|
||||
1. $X_n$: always outputs $0^n$, $D$: [outputs $1$ is $t=0^n$]
|
||||
1. $X_n$: always outputs $0^n$, $D$: [outputs $1$ if $t=0^n$]
|
||||
$$
|
||||
\vert P[t\gets X_n:D(t)=1]-P[t\gets U_n:D(t)=1]\vert=1-\frac{1}{2^n}\approx 1
|
||||
$$
|
||||
|
||||
@@ -0,0 +1,10 @@
|
||||
# CSE 442T
|
||||
|
||||
## Course Description
|
||||
|
||||
This course is an introduction to the theory of cryptography. Topics include:
|
||||
|
||||
One-way functions, trapdoor functions, and hash functions.
|
||||
|
||||
Instructor:
|
||||
|
||||
|
||||
Reference in New Issue
Block a user