This commit is contained in:
Zheyuan Wu
2024-11-19 17:02:27 -06:00
parent 14095ae355
commit 626b05ba2f
2 changed files with 13 additions and 3 deletions

View File

@@ -45,7 +45,7 @@ Let $\{X_n\}_n$ and $\{Y_n\}_n$ be probability ensembles (separate of dist over
$\{X_n\}_n$ and $\{Y_n\}_n$ are computationally **in-distinguishable** if for all non-uniform p.p.t adversary $D$ ("distinguishers") $\{X_n\}_n$ and $\{Y_n\}_n$ are computationally **in-distinguishable** if for all non-uniform p.p.t adversary $D$ ("distinguishers")
$$ $$
|P[x\gets X_n:D(x)=1]-P[y\gets Y_n:d(y)=1]|<\varepsilon(n) |P[x\gets X_n:D(x)=1]-P[y\gets Y_n:D(y)=1]|<\varepsilon(n)
$$ $$
this basically means that the probability of finding any pattern in the two array is negligible. this basically means that the probability of finding any pattern in the two array is negligible.
@@ -53,7 +53,7 @@ this basically means that the probability of finding any pattern in the two arra
If there is a $D$ such that If there is a $D$ such that
$$ $$
|P[x\gets X_n:D(x)=1]-P[y\gets Y_n:d(y)=1]|\geq \mu(n) |P[x\gets X_n:D(x)=1]-P[y\gets Y_n:D(y)=1]|\geq \mu(n)
$$ $$
then $D$ is distinguishing with probability $\mu(n)$ then $D$ is distinguishing with probability $\mu(n)$
@@ -98,7 +98,7 @@ Example:
Building distinguishers Building distinguishers
1. $X_n$: always outputs $0^n$, $D$: [outputs $1$ is $t=0^n$] 1. $X_n$: always outputs $0^n$, $D$: [outputs $1$ if $t=0^n$]
$$ $$
\vert P[t\gets X_n:D(t)=1]-P[t\gets U_n:D(t)=1]\vert=1-\frac{1}{2^n}\approx 1 \vert P[t\gets X_n:D(t)=1]-P[t\gets U_n:D(t)=1]\vert=1-\frac{1}{2^n}\approx 1
$$ $$

View File

@@ -0,0 +1,10 @@
# CSE 442T
## Course Description
This course is an introduction to the theory of cryptography. Topics include:
One-way functions, trapdoor functions, and hash functions.
Instructor: