update
This commit is contained in:
@@ -118,7 +118,7 @@ BRDF dataset:
|
|||||||
|
|
||||||
#### Digital Camera block diagram
|
#### Digital Camera block diagram
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
Scanning protocols:
|
Scanning protocols:
|
||||||
|
|
||||||
@@ -126,3 +126,88 @@ Scanning protocols:
|
|||||||
- Interlaced: odd and even lines are exposed at different times
|
- Interlaced: odd and even lines are exposed at different times
|
||||||
- Rolling shutter: each line is exposed as it is read out
|
- Rolling shutter: each line is exposed as it is read out
|
||||||
|
|
||||||
|
#### Eye
|
||||||
|
|
||||||
|
- Pupil
|
||||||
|
- Iris
|
||||||
|
- Retina
|
||||||
|
- Rods and cones
|
||||||
|
- ...
|
||||||
|
|
||||||
|
#### Eye Movements
|
||||||
|
|
||||||
|
- Saccade
|
||||||
|
- Can be consciously controlled. Related to perceptual attention.
|
||||||
|
- 200ms to initiation, 20 to 200ms to carry out. Large amplitude.
|
||||||
|
- Smooth pursuit
|
||||||
|
- Tracking an object
|
||||||
|
- Difficult w/o an object to track!
|
||||||
|
- Microsaccade and Ocular microtremor (OMT)
|
||||||
|
- Involuntary. Smaller amplitude. Especially evident during prolonged
|
||||||
|
fixation.
|
||||||
|
|
||||||
|
#### Contrast Sensitivity
|
||||||
|
|
||||||
|
- Uniform contrast image content, with increasing frequency
|
||||||
|
- Why not uniform across the top?
|
||||||
|
- Low frequencies: harder to see because of slower intensity changes
|
||||||
|
- Higher frequencies: harder to see because of ability of our visual system to resolve fine features
|
||||||
|
|
||||||
|
### Color Perception
|
||||||
|
|
||||||
|
Visible light spectrum: 380 to 780 nm
|
||||||
|
|
||||||
|
- 400 to 500 nm: blue
|
||||||
|
- 500 to 600 nm: green
|
||||||
|
- 600 to 700 nm: red
|
||||||
|
|
||||||
|
#### HSV model
|
||||||
|
|
||||||
|
We use Gaussian functions to model the sensitivity of the human eye to different wavelengths.
|
||||||
|
|
||||||
|
- Hue: color (the wavelength of the highest peak of the sensitivity curve)
|
||||||
|
- Saturation: color purity (the variance of the sensitivity curve)
|
||||||
|
- Value: color brightness (the highest peak of the sensitivity curve)
|
||||||
|
|
||||||
|
#### Color Sensing in Camera (RGB)
|
||||||
|
|
||||||
|
- 3-chip vs. 1-chip: quality vs. cost
|
||||||
|
|
||||||
|
Bayer filter:
|
||||||
|
|
||||||
|
- Why more green?
|
||||||
|
- Human eye is more sensitive to green light.
|
||||||
|
|
||||||
|
#### Color spaces
|
||||||
|
|
||||||
|
Images in python:
|
||||||
|
|
||||||
|
As matrix.
|
||||||
|
|
||||||
|
```python
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
from mpl_toolkits.mplot3d import Axes3D
|
||||||
|
from skimage import io
|
||||||
|
|
||||||
|
def plot_rgb_3d(image_path):
|
||||||
|
image = io.imread(image_path)
|
||||||
|
r, g, b = image[:,:,0], image[:,:,1], image[:,:,2]
|
||||||
|
fig = plt.figure()
|
||||||
|
ax = fig.add_subplot(111, projection='3d')
|
||||||
|
ax.scatter(r.flatten(), g.flatten(), b.flatten(), c=image.reshape(-1, 3)/255.0, marker='.')
|
||||||
|
ax.set_xlabel('Red')
|
||||||
|
ax.set_ylabel('Green')
|
||||||
|
ax.set_zlabel('Blue')
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
plot_rgb_3d('image.jpg')
|
||||||
|
```
|
||||||
|
|
||||||
|
Other color spaces:
|
||||||
|
|
||||||
|
- YCbCr (fast to compute, usually used in TV)
|
||||||
|
- HSV
|
||||||
|
- L\*a\*b\* (CIELAB, perceptually uniform color space)
|
||||||
|
|
||||||
|
Most information is in the intensity channel.
|
||||||
|
|||||||
@@ -1 +1,83 @@
|
|||||||
# Lecture 8
|
# Lecture 8
|
||||||
|
|
||||||
|
## Continue on Riemann-Stieltjes Integral
|
||||||
|
|
||||||
|
### Integrable Functions
|
||||||
|
|
||||||
|
#### Theorem 6.9
|
||||||
|
|
||||||
|
If $f$ is monotonic (increasing) on $[a, b]$ and $\alpha$ is continuous on $[a, b]$, then $f\in \mathscr{R}(\alpha)$ on $[a, b]$.
|
||||||
|
|
||||||
|
Proof:
|
||||||
|
|
||||||
|
Given a partition $P = \{a = x_0, x_1, \cdots, x_n = b\}$, we have
|
||||||
|
|
||||||
|
$$
|
||||||
|
M_i = \sup_{x\in [x_{i-i}, x_i]} f(x)\leq f(x_{i})
|
||||||
|
$$
|
||||||
|
|
||||||
|
$$
|
||||||
|
m_i = \inf_{x\in [x_{i-1}, x_i]} f(x)\geq f(x_{i-1})
|
||||||
|
$$
|
||||||
|
|
||||||
|
So,
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{aligned}
|
||||||
|
U(P,f,\alpha) - L(P,f,\alpha) &= \sum_{i=1}^{n} (M_i - m_i)\Delta \alpha_i \\
|
||||||
|
&\leq \sum_{i=1}^{n} \left[ f(x_i) - f(x_{i-1}) \right] \left[ \alpha(x_i) - \alpha(x_{i-1}) \right] \\
|
||||||
|
|
||||||
|
&\leq \sum_{i=1}^{n} \left[ f(x_i) - f(x_{i-1}) \right](\sup_{x\in [x_{i-1}, x_i]} \alpha(x) - \inf_{x\in [x_{i-1}, x_i]} \alpha(x)) \\
|
||||||
|
&=U(P,\alpha,f) - L(P,\alpha,f)
|
||||||
|
\end{aligned}
|
||||||
|
$$
|
||||||
|
|
||||||
|
By Theorem 6.8, $\alpha\in \mathscr{R}(f)$, so for any $\epsilon > 0$, there exists a partition $P$ such that
|
||||||
|
|
||||||
|
$$
|
||||||
|
U(P,\alpha,f) - L(P,\alpha,f) < \epsilon
|
||||||
|
$$
|
||||||
|
|
||||||
|
Therefore, $U(P,f,\alpha) - L(P,f,\alpha)<U(P,\alpha,f) - L(P,\alpha,f) < \epsilon$, so $f\in \mathscr{R}(\alpha)$ on $[a, b]$.
|
||||||
|
|
||||||
|
EOP
|
||||||
|
|
||||||
|
#### Theorem 6.10
|
||||||
|
|
||||||
|
Suppose $f$ is bounded on $[a, b]$ and has finitely many points $\{y_1, y_2, \cdots, y_J\}$ of discontinuity, and $\alpha$ is continuous on $[a, b]$. Then $f\in \mathscr{R}(\alpha)$ on $[a, b]$.
|
||||||
|
|
||||||
|
Proof:
|
||||||
|
|
||||||
|
Since $f$ is bounded, there exists a $M>0$ such that $|f(x)|\leq M$ for all $x\in [a, b]$.
|
||||||
|
|
||||||
|
Let $\epsilon > 0$. Since $\alpha$ is continuous on $[a, b]$, we can find some intervals $[u_j,v_j]\subset (a,b)$ and $y_j\in [u_j,v_j]$ and $|\alpha(u_j) - \alpha(v_j)| < \epsilon$ for all $j=1,2,\cdots,J$.
|
||||||
|
|
||||||
|
Set $K=[a,b]\setminus \bigcup_{j=1}^{J}(u_j,v_j)$. Since $K$ is compact, $f$ is uniformly continuous on $K$. Hence, there exists a $\delta > 0$ such that for any $s,t\in K$ and $|s-t|<\delta$, we have $|f(s)-f(t)|<\epsilon$.
|
||||||
|
|
||||||
|
Let $P=\{x_0,x_1,\cdots,x_n=b\}$ containing all the points $u_j,v_j,\forall j=1,2,\cdots,J$ and $\Delta x_i<\delta,\forall x_i\notin \{u_j,v_j,\forall j=1,2,\cdots,J\}$.
|
||||||
|
|
||||||
|
Then,
|
||||||
|
|
||||||
|
If $x_i=u_j$ for some $j=1,2,\cdots,J$, then $M_i-m_i\leq M:=2\sup|f_x|$. But $\Delta \alpha_i\leq \epsilon$ for all $i=1,2,\cdots,n$.
|
||||||
|
|
||||||
|
If $x_i\neq u_j$ for all $j=1,2,\cdots,J$, then by uniform continuity of $f$ on $K$, we have $M_i-m_i\leq \epsilon$.
|
||||||
|
|
||||||
|
In either case, we have
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{aligned}
|
||||||
|
U(P,f,\alpha) - L(P,f,\alpha) &= \sum_{i=1}^{n} (M_i - m_i)\Delta \alpha_i \\
|
||||||
|
&\leq J M\epsilon + \sum_{i=1}^{n} \epsilon \Delta \alpha_i \\
|
||||||
|
&= \epsilon(J M + \sum_{i=1}^{n} \Delta \alpha_i)
|
||||||
|
\end{aligned}
|
||||||
|
$$
|
||||||
|
|
||||||
|
Since $\epsilon$ is arbitrary, we have $U(P,f,\alpha) - L(P,f,\alpha) < \epsilon$.
|
||||||
|
|
||||||
|
Therefore, $f\in \mathscr{R}(\alpha)$ on $[a, b]$.
|
||||||
|
|
||||||
|
EOP
|
||||||
|
|
||||||
|
#### Theorem 6.11
|
||||||
|
|
||||||
|
Suppose $f\in \mathscr{R}(\alpha)$ on $[a, b]$, $m\leq f(x)\leq M$ for all $x\in [a, b]$, and $\phi$ is continuous on $[m, M]$, and let $h(x)=\phi(f(x))$ on $[a, b]$. Then $h\in \mathscr{R}(\alpha)$ on $[a, b]$.
|
||||||
|
|||||||
Reference in New Issue
Block a user