update build and types
This commit is contained in:
33
pages/Math4121/Math4121_L35.md
Normal file
33
pages/Math4121/Math4121_L35.md
Normal file
@@ -0,0 +1,33 @@
|
||||
# Math4121 Lecture 35
|
||||
|
||||
## Continue on Lebesgue Integration
|
||||
|
||||
### Lebesgue Integration
|
||||
|
||||
#### Definition of Lebesgue Integral
|
||||
|
||||
For simple functions $\phi = \sum_{i=1}^{n} a_i \chi_{S_i}$, given a measure $E$, the Lebesgue integral is defined as:
|
||||
|
||||
$$
|
||||
\int_{\mathbb{R}^n} \phi \, dm = \sum_{i=1}^{n} a_i m(S_i\cap E)
|
||||
$$
|
||||
|
||||
|
||||
Given a non-negative measurable function $f$ and a measurable set $E$.
|
||||
|
||||
Define $\int_E f \, dm = \sup \left\{ \int_E \phi \, dm : \phi \text{ is a simple function and } \phi \leq f \right\}$
|
||||
|
||||
(**We do allows $\int_E f \, dm = \infty$**)
|
||||
|
||||
For general measurable function $f$, we can define $f^-(x)=\max\{0,-f(x)\}$, $f^+(x)=\max\{0,f(x)\}$. (The positive part of the function and the negative part of the function, both non-negative)
|
||||
|
||||
Then $f=f^+-f^-$.
|
||||
|
||||
We say $f$ is integrable if $\int_E f^+ \, dm < \infty$ and $\int_E f^- \, dm < \infty$. (both finite) If at least one is finite, define
|
||||
|
||||
$$
|
||||
\int_E f \, dm = \int_E f^+ \, dm - \int_E f^- \, dm
|
||||
$$
|
||||
|
||||
We allow for $A-\infty = -\infty$ and $A+\infty = \infty$ for any $A\in \mathbb{R}$. But not $\infty-\infty$.
|
||||
|
||||
Reference in New Issue
Block a user