update build and types
This commit is contained in:
17
Jenkinsfile
vendored
17
Jenkinsfile
vendored
@@ -20,12 +20,25 @@ pipeline {
|
||||
steps {
|
||||
script {
|
||||
echo "Building docker image ${registry}:${version}.${env.BUILD_ID}"
|
||||
def customImage = docker.build("${registry}:${version}.${env.BUILD_ID}")
|
||||
def customImage = docker.build("${registry}:v${version}.${env.BUILD_ID}")
|
||||
|
||||
echo "Pushing docker image ${registry}:${version}.${env.BUILD_ID}"
|
||||
echo "Pushing docker image ${registry}:v${version}.${env.BUILD_ID}"
|
||||
customImage.push()
|
||||
}
|
||||
}
|
||||
}
|
||||
stage('Deploy') {
|
||||
steps {
|
||||
echo "Deploying docker image ${registry}:v${version}.${env.BUILD_ID}"
|
||||
echo "Stopping existing container"
|
||||
sh 'docker stop notenextra'
|
||||
echo "Removing existing container"
|
||||
sh 'docker rm notenextra'
|
||||
echo "Running new docker container"
|
||||
sh 'docker run -d -p 13000:3000 --name notenextra ${registry}:v${version}.${env.BUILD_ID}'
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@@ -166,11 +166,11 @@ y \\
|
||||
\end{pmatrix}
|
||||
$$
|
||||
|
||||
Constraint from a match $(x_i,x_i^′)$: $x_i^′≅Hx_i$
|
||||
Constraint from a match $(x_i,x_i^')$: $x_i^'≅Hx_i$
|
||||
|
||||
How can we get rid of the scale ambiguity?
|
||||
|
||||
Cross product trick: $x_i^′ × Hx_i=0$
|
||||
Cross product trick: $x_i^' × Hx_i=0$
|
||||
|
||||
The cross product is defined as:
|
||||
|
||||
@@ -181,9 +181,9 @@ $$
|
||||
Let $h_1^T, h_2^T, h_3^T$ be the rows of $H$. Then
|
||||
|
||||
$$
|
||||
x_i^′ × Hx_i=\begin{pmatrix}
|
||||
x_i^′ \\
|
||||
y_i^′ \\
|
||||
x_i^' × Hx_i=\begin{pmatrix}
|
||||
x_i^' \\
|
||||
y_i^' \\
|
||||
1
|
||||
\end{pmatrix} \times \begin{pmatrix}
|
||||
h_1^T x_i \\
|
||||
@@ -192,18 +192,18 @@ x_i^′ × Hx_i=\begin{pmatrix}
|
||||
\end{pmatrix}
|
||||
=
|
||||
\begin{pmatrix}
|
||||
y_i^′ h_3^T x_i−h_2^T x_i \\
|
||||
h_1^T x_i−x_i^′ h_3^T x_i \\
|
||||
x_i^′ h_2^T x_i−y_i^′ h_1^T x_i
|
||||
y_i^' h_3^T x_i−h_2^T x_i \\
|
||||
h_1^T x_i−x_i^' h_3^T x_i \\
|
||||
x_i^' h_2^T x_i−y_i^' h_1^T x_i
|
||||
\end{pmatrix}
|
||||
$$
|
||||
|
||||
Constraint from a match $(x_i,x_i^′)$:
|
||||
Constraint from a match $(x_i,x_i^')$:
|
||||
|
||||
$$
|
||||
x_i^′ × Hx_i=\begin{pmatrix}
|
||||
x_i^′ \\
|
||||
y_i^′ \\
|
||||
x_i^' × Hx_i=\begin{pmatrix}
|
||||
x_i^' \\
|
||||
y_i^' \\
|
||||
1
|
||||
\end{pmatrix} \times \begin{pmatrix}
|
||||
h_1^T x_i \\
|
||||
@@ -212,9 +212,9 @@ x_i^′ × Hx_i=\begin{pmatrix}
|
||||
\end{pmatrix}
|
||||
=
|
||||
\begin{pmatrix}
|
||||
y_i^′ h_3^T x_i−h_2^T x_i \\
|
||||
h_1^T x_i−x_i^′ h_3^T x_i \\
|
||||
x_i^′ h_2^T x_i−y_i^′ h_1^T x_i
|
||||
y_i^' h_3^T x_i−h_2^T x_i \\
|
||||
h_1^T x_i−x_i^' h_3^T x_i \\
|
||||
x_i^' h_2^T x_i−y_i^' h_1^T x_i
|
||||
\end{pmatrix}
|
||||
$$
|
||||
|
||||
@@ -222,9 +222,9 @@ Rearranging the terms:
|
||||
|
||||
$$
|
||||
\begin{bmatrix}
|
||||
0^T &-x_i^T &y_i^′ x_i^T \\
|
||||
x_i^T &0^T &-x_i^′ x_i^T \\
|
||||
y_i^′ x_i^T &x_i^′ x_i^T &0^T
|
||||
0^T &-x_i^T &y_i^' x_i^T \\
|
||||
x_i^T &0^T &-x_i^' x_i^T \\
|
||||
y_i^' x_i^T &x_i^' x_i^T &0^T
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
h_1 \\
|
||||
|
||||
33
pages/Math4121/Math4121_L35.md
Normal file
33
pages/Math4121/Math4121_L35.md
Normal file
@@ -0,0 +1,33 @@
|
||||
# Math4121 Lecture 35
|
||||
|
||||
## Continue on Lebesgue Integration
|
||||
|
||||
### Lebesgue Integration
|
||||
|
||||
#### Definition of Lebesgue Integral
|
||||
|
||||
For simple functions $\phi = \sum_{i=1}^{n} a_i \chi_{S_i}$, given a measure $E$, the Lebesgue integral is defined as:
|
||||
|
||||
$$
|
||||
\int_{\mathbb{R}^n} \phi \, dm = \sum_{i=1}^{n} a_i m(S_i\cap E)
|
||||
$$
|
||||
|
||||
|
||||
Given a non-negative measurable function $f$ and a measurable set $E$.
|
||||
|
||||
Define $\int_E f \, dm = \sup \left\{ \int_E \phi \, dm : \phi \text{ is a simple function and } \phi \leq f \right\}$
|
||||
|
||||
(**We do allows $\int_E f \, dm = \infty$**)
|
||||
|
||||
For general measurable function $f$, we can define $f^-(x)=\max\{0,-f(x)\}$, $f^+(x)=\max\{0,f(x)\}$. (The positive part of the function and the negative part of the function, both non-negative)
|
||||
|
||||
Then $f=f^+-f^-$.
|
||||
|
||||
We say $f$ is integrable if $\int_E f^+ \, dm < \infty$ and $\int_E f^- \, dm < \infty$. (both finite) If at least one is finite, define
|
||||
|
||||
$$
|
||||
\int_E f \, dm = \int_E f^+ \, dm - \int_E f^- \, dm
|
||||
$$
|
||||
|
||||
We allow for $A-\infty = -\infty$ and $A+\infty = \infty$ for any $A\in \mathbb{R}$. But not $\infty-\infty$.
|
||||
|
||||
Reference in New Issue
Block a user