update 416
This commit is contained in:
@@ -71,7 +71,7 @@ And $u$ and $v$ have continuous partial derivatives at $(x_0,y_0)$.
|
||||
|
||||
And let $c=\frac{\partial u}{\partial x}(x_0,y_0)$ and $d=\frac{\partial v}{\partial x}(x_0,y_0)$.
|
||||
|
||||
Then $f'(\zeta_0)=c+id$.
|
||||
**Then $f'(\zeta_0)=c+id$, is holomorphic at $\zeta_0$.**
|
||||
|
||||
### Holomorphic Functions
|
||||
|
||||
|
||||
246
pages/Math416/Math416_L4.md
Normal file
246
pages/Math416/Math416_L4.md
Normal file
@@ -0,0 +1,246 @@
|
||||
# Lecture 4
|
||||
|
||||
## Review
|
||||
|
||||
### Derivative of a complex function
|
||||
|
||||
$$
|
||||
\frac{\partial f}{\partial z}=\frac{1}{2}\left(\frac{\partial f}{\partial x}-\frac{\partial f}{\partial y}\right)
|
||||
$$
|
||||
|
||||
$$
|
||||
\frac{\partial f}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}\right)
|
||||
$$
|
||||
|
||||
### Angle between two curves
|
||||
|
||||
Let $\gamma_1,\gamma_2$ be two curves in $G\subset \mathbb{C}$ with $\gamma_1(t_0)=\gamma_2(t_0)=\zeta_0$ for some $t_0\in I_1\cap I_2$.
|
||||
|
||||
The angle between $\gamma_1$ and $\gamma_2$ at $\zeta_0$ is the angle between the vectors $\gamma_1'(t_0)$ and $\gamma_2'(t_0)$. Denote as $\arg(\gamma_2'(t_0))-\arg(\gamma_1'(t_0))=\arg(\gamma_2'(t_0)\gamma_1'(t_0))$.
|
||||
|
||||
### Cauchy-Riemann equations
|
||||
|
||||
$$
|
||||
\frac{\partial f}{\partial z}=\frac{1}{2}\left(\frac{\partial f}{\partial x}-\frac{\partial f}{\partial y}\right)
|
||||
$$
|
||||
|
||||
## Continue on last lecture
|
||||
|
||||
### Theorem of conformality
|
||||
|
||||
Suppose $f:G\to \mathbb{C}$ is holomorphic function on open set $G\subset \mathbb{C}$ and $\gamma_1,\gamma_2$ are regular curves in $G$ with $\gamma_1(t_0)=\gamma_2(t_0)=\zeta_0$ for some $t_0\in I_1\cap I_2$.
|
||||
|
||||
If $f'(\zeta_0)\neq 0$, then the angle between $\gamma_1$ and $\gamma_2$ at $\zeta_0$ is the same as the angle between the vectors $f'(\zeta_0)\gamma_1'(t_0)$ and $f'(\zeta_0)\gamma_2'(t_0)$.
|
||||
|
||||
### Lemma of function of a curve and angle
|
||||
|
||||
If $f:G\to \mathbb{C}$ is holomorphic function on open set $G\subset \mathbb{C}$ and $\gamma$ is differentiable curve in $G$ with $\gamma(t_0)=\zeta_0$ for some $t_0\in I$.
|
||||
|
||||
Then,
|
||||
|
||||
$$
|
||||
(f\circ \gamma)'(t_0)=f'(\gamma(t_0))\gamma'(t_0).
|
||||
$$
|
||||
|
||||
> Looks like the chain rule.
|
||||
|
||||
Proof:
|
||||
|
||||
We want to show that
|
||||
|
||||
$$
|
||||
\lim_{t\to t_0}\frac{(f\circ \gamma)(t)-(f\circ \gamma)(t_0)}{t-t_0}=f'(\gamma(t_0))\gamma'(t_0).
|
||||
$$
|
||||
|
||||
> Notation:
|
||||
>
|
||||
> A function $g(h)$ is $O(h)$ if $\exists C>0$ such that $|g(h)|\leq C|h|$ for all $h$ in a neighborhood of $0$.
|
||||
>
|
||||
> A function $g(h)$ is $o(h)$ if $\lim_{h\to 0}\frac{g(h)}{h}=0$.
|
||||
>
|
||||
> <!---TODO: check after lecture-->
|
||||
> $f$ is differentiable if and only if $f(z+h)=f(z)+f'(z)h+\frac{1}{2}h^2f''(z)+o(h^3)$ as $h\to 0$.
|
||||
|
||||
|
||||
|
||||
Since $f$ is holomorphic at $\gamma(t_0)=\zeta_0$, we have
|
||||
|
||||
$$
|
||||
f(\zeta_0)=f(\zeta_0)+(\zeta-\zeta_0)f'(\zeta_0)+o(\zeta-\zeta_0)
|
||||
$$
|
||||
|
||||
and
|
||||
|
||||
$$
|
||||
f(\gamma(t_0))=f(\gamma(t_0))+f'(\gamma(t_0))(\gamma(t)-\gamma(t_0))+o(\gamma(t)-\gamma(t_0))
|
||||
$$
|
||||
|
||||
So,
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\lim_{t\to t_0}\frac{(f\circ \gamma)(t)-(f\circ \gamma)(t_0)}{t-t_0}
|
||||
&=\lim_{t\to t_0}\frac{\left[f(\gamma(t_0))+f'(\gamma(t_0))(\gamma(t)-\gamma(t_0))+o(\gamma(t)-\gamma(t_0))\right]-f(\gamma(t_0))}{t-t_0} \\
|
||||
&=\lim_{t\to t_0}\frac{f'(\gamma(t_0))(\gamma(t)-\gamma(t_0))+o(\gamma(t)-\gamma(t_0))}{t-t_0} \\
|
||||
&=\lim_{t\to t_0}\frac{f'(\gamma(t_0))(\gamma(t)-\gamma(t_0))}{t-t_0} +\lim_{t\to t_0}\frac{o(\gamma(t)-\gamma(t_0))}{t-t_0} \\
|
||||
&=f'(\gamma(t_0))\lim_{t\to t_0}\frac{\gamma(t)-\gamma(t_0)}{t-t_0} +0\\
|
||||
&=f'(\gamma(t_0))\gamma'(t_0)
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
EOP
|
||||
|
||||
#### Definition of conformal function
|
||||
|
||||
A function $f:G\to \mathbb{C}$ is called conformal if it preserves the angle between two curves.
|
||||
|
||||
#### Theorem of conformal function
|
||||
|
||||
If $f:G\to \mathbb{C}$ is holomorphic function on open set $G\subset \mathbb{C}$ and $\gamma_1,\gamma_2$ are regular curves in $G$ with $\gamma_1(t_0)=\gamma_2(t_0)=\zeta_0$ for some $t_0\in I_1\cap I_2$, and $f'(\zeta_0)\neq 0$, then $f$ is conformal at $\zeta_0$.
|
||||
|
||||
Example:
|
||||
|
||||
$$
|
||||
f(z)=z^2
|
||||
$$
|
||||
|
||||
is not conformal at $z=0$ because $f'(0)=0$.
|
||||
|
||||
|
||||
|
||||
#### Lemma of conformal function
|
||||
|
||||
Suppose $f$ is real differentiable, let $a=\frac{\partial f}{\partial \zeta}(\zeta_0)$, $b=\frac{\partial f}{\partial \overline{\zeta}}(\zeta_0)$.
|
||||
|
||||
Let $\gamma(t_0)=\zeta_0$. Then $(f\circ \gamma)'(t_0)=a\gamma'(t_0)+b\overline{\gamma'(t_0)}$.
|
||||
|
||||
Proof:
|
||||
|
||||
$f=u+iv$, $u,v$ are real differentiable.
|
||||
|
||||
$$
|
||||
a=\frac{\partial f}{\partial \zeta}=\frac{1}{2}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+i\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)
|
||||
$$
|
||||
|
||||
$$
|
||||
b=\frac{\partial f}{\partial \overline{\zeta}}=\frac{1}{2}\left(\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}\right)+i\frac{1}{2}\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)
|
||||
$$
|
||||
|
||||
$$
|
||||
\gamma'(t_0)=\frac{d\alpha}{dt}+i\frac{d\beta}{dt}
|
||||
$$
|
||||
|
||||
$$
|
||||
\overline{\gamma'(t_0)}=\frac{d\beta}{dt}-i\frac{d\alpha}{dt}
|
||||
$$
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
(f\circ \gamma)'(t_0)&=\frac{\partial f}{\partial \zeta}(\gamma(t_0))\gamma'(t_0)+\frac{\partial f}{\partial \overline{\zeta}}(\gamma(t_0))\overline{\gamma'(t_0)} \\
|
||||
&=\left[\frac{1}{2}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+i\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)\right]\left(\frac{d\alpha}{dt}+i\frac{d\beta}{dt}\right)\\
|
||||
&+\left[\frac{1}{2}\left(\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}\right)+i\frac{1}{2}\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)\right]\left(\frac{d\beta}{dt}-i\frac{d\alpha}{dt}\right) \\
|
||||
&=\left[\frac{1}{2}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)\frac{d\alpha}{dt}-\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)\frac{d\beta}{dt}\right]\\
|
||||
&+i\left[\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)\frac{d\alpha}{dt}+\frac{1}{2}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)\frac{d\beta}{dt}\right] \\
|
||||
&=\left[a+b\right]\frac{d\alpha}{dt}+i\left[a-b\right]\frac{d\beta}{dt} \\
|
||||
&=\left[u_x+iv_x\right]\frac{d\alpha}{dt}+i\left[v_y-iu_y\right]\frac{d\beta}{dt} \\
|
||||
&=a\gamma'(t_0)+b\overline{\gamma'(t_0)}
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
EOP
|
||||
|
||||
#### Theorem of differentiability
|
||||
|
||||
Let $f:G\to \mathbb{C}$ be holomorphic function on open set $G\subset \mathbb{C}$ and real differentiable. $f=u+iv$ where $u,v$ are real differentiable functions.
|
||||
|
||||
Then, $f$ is conformal if and only if $f$ is holomorphic at $\zeta_0$ and $f'(\zeta_0)\neq 0,\forall \zeta_0\in G$.
|
||||
|
||||
Proof:
|
||||
|
||||
<!---TODO: check after lecture-->
|
||||
|
||||
Case 1: Suppose $f(\zeta)=a\zeta+b\overline{\zeta}$, Let $b=\frac{\partial f}{\partial \overline{z}}(\zeta)$. We need to prove $a+b\neq 0$. So we want $b=0$ and $a\neq 0$, other wise $f(\mathbb{R})=0$.
|
||||
|
||||
$f:\mathbb{R}\to \{(a+b)t\}$ is not conformal.
|
||||
|
||||
...
|
||||
|
||||
Case 2: Immediate consequence of the lemma of conformal function.
|
||||
|
||||
EOP
|
||||
|
||||
### Harmonic function
|
||||
|
||||
Let $\Omega$ be a domain in $\mathbb{C}$. A function $u:\Omega\to \mathbb{R}$
|
||||
|
||||
> A domain is a connected open set.
|
||||
|
||||
Say $g:\Omega\to \mathbb{R} \text{ or } \mathbb{C}$ is harmonic if it satisfies the Laplace equation
|
||||
|
||||
$$
|
||||
\Delta g=\frac{\partial^2 g}{\partial x^2}+\frac{\partial^2 g}{\partial y^2}=0.
|
||||
$$
|
||||
|
||||
#### Theorem of harmonic conjugate
|
||||
|
||||
Let $f=u+iv$ be holomorphic function on domain $\Omega\subset \mathbb{C}$. Then $u$ and $v$ are harmonic functions on $\Omega$.
|
||||
|
||||
Proof:
|
||||
|
||||
$$
|
||||
\Delta u=\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=0.
|
||||
$$
|
||||
|
||||
Using the Cauchy-Riemann equations, we have
|
||||
|
||||
$$
|
||||
\frac{\partial^2 u}{\partial x^2}=\frac{\partial^2 v}{\partial x\partial y}, \quad \frac{\partial^2 u}{\partial y^2}=-\frac{\partial^2 v}{\partial y\partial x}.
|
||||
$$
|
||||
|
||||
So,
|
||||
|
||||
$$
|
||||
\Delta u=\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=\frac{\partial^2 v}{\partial x\partial y}-\frac{\partial^2 v}{\partial y\partial x}=0.
|
||||
$$
|
||||
|
||||
EOP
|
||||
|
||||
If $v$ is such that $f=u+iv$ is holomorphic on $\Omega$, then $v$ is called harmonic conjugate of $u$ on $\Omega$.
|
||||
|
||||
Example:
|
||||
|
||||
$$
|
||||
u(x,y)=x^2-y^2
|
||||
$$
|
||||
|
||||
is harmonic on $\mathbb{C}$.
|
||||
|
||||
To find a harmonic conjugate of $u$ on $\mathbb{C}$, we need to find a function $v$ such that
|
||||
|
||||
$$
|
||||
\frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}=2y, \quad \frac{\partial v}{\partial y}=\frac{\partial u}{\partial x}=2x.
|
||||
$$
|
||||
|
||||
Integrating, we get
|
||||
|
||||
$$
|
||||
v(x,y)=2xy+G(y)
|
||||
$$
|
||||
|
||||
$$
|
||||
\frac{\partial v}{\partial y}=2x+G'(y)=2x
|
||||
$$
|
||||
|
||||
So,
|
||||
|
||||
$$
|
||||
G'(y)=0 \implies G(y)=C
|
||||
$$
|
||||
|
||||
$$
|
||||
v(x,y)=2xy+C
|
||||
$$
|
||||
|
||||
is a harmonic conjugate of $u$ on $\mathbb{C}$.
|
||||
|
||||
Combine $u$ and $v$ to get $f(x,y)=x^2-y^2+2xyi+C=(x+iy)^2+C=z^2+C$, which is holomorphic on $\mathbb{C}$.
|
||||
@@ -6,4 +6,5 @@ export default {
|
||||
Math416_L1: "Complex Variables (Lecture 1)",
|
||||
Math416_L2: "Complex Variables (Lecture 2)",
|
||||
Math416_L3: "Complex Variables (Lecture 3)",
|
||||
Math416_L4: "Complex Variables (Lecture 4)",
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user