update 416
This commit is contained in:
@@ -71,7 +71,7 @@ And $u$ and $v$ have continuous partial derivatives at $(x_0,y_0)$.
|
||||
|
||||
And let $c=\frac{\partial u}{\partial x}(x_0,y_0)$ and $d=\frac{\partial v}{\partial x}(x_0,y_0)$.
|
||||
|
||||
Then $f'(\zeta_0)=c+id$.
|
||||
**Then $f'(\zeta_0)=c+id$, is holomorphic at $\zeta_0$.**
|
||||
|
||||
### Holomorphic Functions
|
||||
|
||||
|
||||
Reference in New Issue
Block a user