update
This commit is contained in:
@@ -72,6 +72,4 @@ ROI alignment:
|
||||
- Align the proposal to the feature map.
|
||||
- Align the proposal to the feature map.
|
||||
|
||||
Use bounding box regression to refine the proposal.
|
||||
|
||||
|
||||
Use bounding box regression to refine the proposal.
|
||||
31
pages/CSE559A/CSE559A_L15.md
Normal file
31
pages/CSE559A/CSE559A_L15.md
Normal file
@@ -0,0 +1,31 @@
|
||||
# CSE559A Lecture 15
|
||||
|
||||
## Continue on object detection
|
||||
|
||||
### Two strategies for object detection
|
||||
|
||||
#### R-CNN: Region proposals + CNN features
|
||||
|
||||

|
||||
|
||||
#### Fast R-CNN: CNN features + RoI pooling
|
||||
|
||||

|
||||
|
||||
Use bilinear interpolation to get the features of the proposal.
|
||||
|
||||
#### Region of interest pooling
|
||||
|
||||

|
||||
|
||||
Use backpropagation to get the gradient of the proposal.
|
||||
|
||||
### New materials
|
||||
|
||||
#### Faster R-CNN
|
||||
|
||||
Use one CNN to generate region proposals. And use another CNN to classify the proposals.
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -17,4 +17,5 @@ export default {
|
||||
CSE559A_L12: "Computer Vision (Lecture 12)",
|
||||
CSE559A_L13: "Computer Vision (Lecture 13)",
|
||||
CSE559A_L14: "Computer Vision (Lecture 14)",
|
||||
CSE559A_L15: "Computer Vision (Lecture 15)",
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user