update
This commit is contained in:
@@ -2,8 +2,6 @@
|
||||
|
||||
## Continue on Arzela-Osgood Theorem
|
||||
|
||||
|
||||
|
||||
Proof:
|
||||
|
||||
Part 2: Control the integral on $\mathcal{U}$
|
||||
@@ -100,7 +98,7 @@ Part 2: If $f$ is pointwise discontinuous, then $\mathcal{D}$ is of first catego
|
||||
|
||||
Let $P_k=\{x\in [a,b]: w(f;x)\geq \frac{1}{k}\}$, $\mathcal{D}=\bigcup_{k=1}^\infty P_k$.
|
||||
|
||||
Need to show that each $P_k$ is nowhere dense. (under the assumption that $\mathcal{C)$ is dense).
|
||||
Need to show that each $P_k$ is nowhere dense. (under the assumption that $\mathcal{C}$ is dense).
|
||||
|
||||
Let $I\subseteq [a,b]$ so $\exists c\in \mathcal{C}\cap I$. So by definition of $w(f;c)$, $\exists J\subseteq I$ and $c\in J$ such that $w(f;J)\leq \frac{1}{k}$ so for all $x\in J$, $w(f;x)\leq \frac{1}{k}$. so $J\subseteq P_k=\emptyset$.
|
||||
|
||||
|
||||
@@ -1 +1,139 @@
|
||||
# Lecture 23
|
||||
# Math 4121 Lecture 23
|
||||
|
||||
## Chapter 5 Measure Theory
|
||||
|
||||
### Weierstrass idea
|
||||
|
||||
Define
|
||||
|
||||
$$
|
||||
S_f(x) = \{(x,y)\in \mathbb{R}^2: 0\leq y\leq f(x)\}
|
||||
$$
|
||||
|
||||
We take the outer content in $\mathbb{R}^2$ of $S_f(x)$ to be the area of the largest rectangle that can be inscribed in $S_f(x)$.
|
||||
|
||||
$$
|
||||
(w)\int_a^b f(x) dx = c_e(S_f(x))
|
||||
$$
|
||||
|
||||
We can generalize this to higher dimensions.
|
||||
|
||||
#### Definition volume of rectangle
|
||||
|
||||
Let $R=I_1\times I_2\times \cdots \times I_n\in \mathbb{R}^n$ be a rectangle.
|
||||
|
||||
The volume of $R$ is defined as
|
||||
|
||||
$$
|
||||
\text{vol}(R) = \prod_{i=1}^n \ell(I_i)
|
||||
$$
|
||||
|
||||
#### Definition of outer content
|
||||
|
||||
For $S\subseteq \mathbb{R}^n$, we define the outer content of $S$ as
|
||||
|
||||
$$
|
||||
c_e(S) = \inf_{\{R_j\}_{j=1}^N} \sum_{j=1}^N \text{vol}(R_j)
|
||||
$$
|
||||
|
||||
where $S\subseteq \bigcup_{j=1}^N R_j$ and $R_j$ are rectangles.
|
||||
|
||||
Note: $\overline{\int}f(x) dx=c_e(S_f(x))$
|
||||
|
||||
#### Definition of inner content
|
||||
|
||||
For $S\subseteq \mathbb{R}^n$, we define the inner content of $S$ as
|
||||
|
||||
$$
|
||||
c_i(S) = \sup_{\{R_j\}_{j=1}^N} \sum_{j=1}^N \text{vol}(R_j)
|
||||
$$
|
||||
|
||||
where $R_j$ are disjoint rectangles $\in \mathbb{R}^n$ and $\bigcup_{j=1}^N R_j\subseteq S$.
|
||||
|
||||
Note: $\underline{\int}f(x) dx=c_i(S_f(x))$
|
||||
|
||||
#### Definition of Jordan measurable set
|
||||
|
||||
A set $S\subseteq \mathbb{R}^n$ is said to be _Jordan measurable_ if $c_e(S)=c_i(S)$.
|
||||
|
||||
and we denote the common value **content** as $c_e(S)=c_i(S)=c(S)$.
|
||||
|
||||
#### Definition of interior of a set
|
||||
|
||||
The interior of a set $S\subseteq \mathbb{R}^n$ is defined as
|
||||
|
||||
$$
|
||||
S^\circ = \{x\in \mathbb{R}^n: B_\delta(x)\subseteq S \text{ for some } \delta > 0\}
|
||||
$$
|
||||
|
||||
_It is the largest open set contained in $S$._
|
||||
|
||||
#### Definition of closure of a set
|
||||
|
||||
The closure of a set $S\subseteq \mathbb{R}^n$ is defined as
|
||||
|
||||
$$
|
||||
\overline{S} = S\cup S'
|
||||
$$
|
||||
|
||||
or equivalently,
|
||||
|
||||
$$
|
||||
\overline{S} = \{x\in \mathbb{R}^n: B_\delta(x)\cap S\neq \emptyset \text{ for all } \delta > 0\}
|
||||
$$
|
||||
|
||||
where $S'$ is the set of all limit points of $S$.
|
||||
|
||||
_It is the smallest closed set containing $S$._
|
||||
|
||||
Homework problem: Complement of the closure of $S$ is the interior of the complement of $S$, i.e.,
|
||||
|
||||
$$
|
||||
(\overline{S})^c = (S^c)^\circ
|
||||
$$
|
||||
|
||||
#### Definition of boundary of a set
|
||||
|
||||
The boundary of a set $S\subseteq \mathbb{R}^n$ is defined as
|
||||
|
||||
$$
|
||||
\partial S = \overline{S}\setminus S^\circ
|
||||
$$
|
||||
|
||||
#### Proposition 5.1 (Criterion for Jordan measurability)
|
||||
|
||||
Let $S\subseteq \mathbb{R}^n$ be a bounded set. Then
|
||||
|
||||
$$
|
||||
c_e(S) = c_i(S)+c_e(\partial S)
|
||||
$$
|
||||
|
||||
So $S$ is Jordan measurable if and only if $c_e(\partial S)=0$.
|
||||
|
||||
Proof:
|
||||
|
||||
Let $\epsilon > 0$, and $\{R_j\}_{j=1}^N$ be an open cover of $\partial S$. such that $\sum_{j=1}^N \text{vol}(R_j) < c_e(\partial S)+\frac{\epsilon}{2}$.
|
||||
|
||||
We slightly enlarge each $R_j$ to $Q_j$ such that $R_j\subseteq Q_j$ and $\text{vol}(Q_j)\leq \text{vol}(R_j)+\frac{\epsilon}{2N}$.
|
||||
|
||||
and $dis(R_j,Q_j^c)>\delta > 0$
|
||||
|
||||
If we could construct such $\{Q_j\}_{j=N+1}^M$ disjoint and
|
||||
|
||||
$$
|
||||
\bigcup_{j=N+1}^M Q_j\subseteq S\subseteq \bigcup_{j=1}^M Q_j
|
||||
$$
|
||||
|
||||
then we have
|
||||
|
||||
$$
|
||||
c_e(S)\leq \sum_{j=1}^M \text{vol}(\partial S)+\epsilon +c_i(S)
|
||||
$$
|
||||
|
||||
We can do this by constructing a set of square with side length $\eta$. We claim:
|
||||
|
||||
If $\eta$ is small enough (depends on $\delta$), then $\mathcal{C}_\eta=\{Q\in K_\eta:Q\subset S\}$, $\mathcal{C}_\eta\cup \left(\bigcup_{j=1}^N Q_j\right)$ is a cover of $S$.
|
||||
|
||||
Suppose $\exists x\in S$ but not in $\mathcal{C}_\eta$. Then $x$ is closed to $\partial S$ so in some $Q_j$. (This proof is not rigorous, but you get the idea. Also not clear in book actually.)
|
||||
|
||||
EOP
|
||||
|
||||
Reference in New Issue
Block a user