update
This commit is contained in:
@@ -34,7 +34,7 @@ Proof:
|
||||
|
||||
Let $z_0\in G$. There exists a neighborhood $\overline{B_r(z_0)}\subset G$ of $z_0$ such that $\left(f_n\right)_{n\in\mathbb{N}}$ converges uniformly on $\overline{B_r(z_0)}$.
|
||||
|
||||
Let $C_r=partial B_r(z_0)$.
|
||||
Let $C_r=\partial B_r(z_0)$.
|
||||
|
||||
By Cauchy integral formula, we have
|
||||
|
||||
@@ -42,7 +42,7 @@ $$
|
||||
f_n(z_0) = \frac{1}{2\pi i}\int_{C_r}\frac{f_n(\zeta)}{\zeta-z_0}d\zeta
|
||||
$$
|
||||
|
||||
$\forall z\in B_r(z_0)$, we have $\frac{f_n(w)}{w-\zeta}$ converges uniformly on $C_r$.
|
||||
$\forall z\in B_r(z_0)$, we have $\frac{f(w)}{w-\zeta}$ converges uniformly on $C_r$.
|
||||
|
||||
So $\lim_{n\to\infty}f_n(z_0) = f(z_0) = \frac{1}{2\pi i}\int_{C_r}\frac{f(w)}{w-z_0}dw$
|
||||
|
||||
|
||||
Reference in New Issue
Block a user