This commit is contained in:
Zheyuan Wu
2025-03-18 13:19:37 -05:00
parent 2dccc64e10
commit f77703f8a4
8 changed files with 339 additions and 9 deletions

View File

@@ -34,7 +34,7 @@ Proof:
Let $z_0\in G$. There exists a neighborhood $\overline{B_r(z_0)}\subset G$ of $z_0$ such that $\left(f_n\right)_{n\in\mathbb{N}}$ converges uniformly on $\overline{B_r(z_0)}$.
Let $C_r=partial B_r(z_0)$.
Let $C_r=\partial B_r(z_0)$.
By Cauchy integral formula, we have
@@ -42,7 +42,7 @@ $$
f_n(z_0) = \frac{1}{2\pi i}\int_{C_r}\frac{f_n(\zeta)}{\zeta-z_0}d\zeta
$$
$\forall z\in B_r(z_0)$, we have $\frac{f_n(w)}{w-\zeta}$ converges uniformly on $C_r$.
$\forall z\in B_r(z_0)$, we have $\frac{f(w)}{w-\zeta}$ converges uniformly on $C_r$.
So $\lim_{n\to\infty}f_n(z_0) = f(z_0) = \frac{1}{2\pi i}\int_{C_r}\frac{f(w)}{w-z_0}dw$