updates
This commit is contained in:
@@ -80,7 +80,8 @@ Let $(X,d)$ be a metric space, $\forall p\in X,\forall r>0$, $B_r(p)$ is an ope
|
||||
|
||||
*every ball is an open set*
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
Let $q\in B_r(p)$.
|
||||
|
||||
@@ -88,7 +89,7 @@ Let $h=r-d(p,q)$.
|
||||
|
||||
Since $q\in B_r(p),h>0$. We claim that $B_h(q)$. Then $d(q,s)<h$, so $d(p,s)\leq d(p,q)+d(q,s)<d(p,q)+h=r$. (using triangle inequality) So $S\in B_r(p)$.
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
### Closed sets
|
||||
|
||||
|
||||
Reference in New Issue
Block a user