This commit is contained in:
Trance-0
2025-10-27 11:56:32 -05:00
parent 0d93eb43d3
commit fb1ffcd040
17 changed files with 219 additions and 134 deletions

View File

@@ -80,7 +80,8 @@ Let $(X,d)$ be a metric space, $\forall p\in X,\forall r>0$, $B_r(p)$ is an ope
*every ball is an open set*
Proof:
<details>
<summary>Proof</summary>
Let $q\in B_r(p)$.
@@ -88,7 +89,7 @@ Let $h=r-d(p,q)$.
Since $q\in B_r(p),h>0$. We claim that $B_h(q)$. Then $d(q,s)<h$, so $d(p,s)\leq d(p,q)+d(q,s)<d(p,q)+h=r$. (using triangle inequality) So $S\in B_r(p)$.
QED
</details>
### Closed sets