Files
NoteNextra-origin/content/Math4111/Math4111_L13.md
2025-07-06 12:40:25 -05:00

143 lines
4.5 KiB
Markdown

# Lecture 13
## Review
Consider the metric space $X=\mathbb{R}$ (with the usual metric $d(x,y)=|x-y|$). Let $E=(0,1)$.
1. Find several examples of sets $Y\subset \mathbb{R}$ such that $E\subset Y$ and $E$ is closed in $Y$.
Example:
1. $Y=E$, $E$ is closed in $Y$.
We can prove this using normal ways, or
**Theorem 2.23** $E$ is closed in $Y\iff E^c$ is open in $Y$
$Y\iff E^c=\phi$ and it's open.
2. $Y=\mathbb{R}\backslash\{0,1\}$
$Y\backslash E=(-\infty,0)\cup (1,\infty)$
**Theorem 2.30** $E\subset Y\subset X$, $E$ is open in $Y\iff$ $\exists G$ open in $X$ such that $G\cap Y=E$
$G\cap Y=Y\backslash E$
And we know $Y\backslash E$ is open in $Y$. By **Theorem 2.23** $E$ is closed in $Y$.
2. If $Y$ is as in part 1, we can conclude that $E$ is closed and bounded in $y$. Part of **Theorem 2.41** says: "If a set is closed and bounded, then it is compact." Why doesn't that theorem apply here.
The set is not closed in $\mathbb{R}^k$.
## New stuffs
### Connected sets
#### Definition 2.45
$A,B\subset X$, we say $A$ and $B$ are separated in $X$ if $A\cup \overline{B}=\phi$ and $\overline{A}\cup B=\phi$
- $E\subset X$ **disconnected** in $X$ if $\exists$ nonempty separated $A,B\subset X$ such that $E=A\cup B$
- $E\subset X$ is **connected** in $X$ if it is not disconnected.
Example 2.46
$(0,1),(1,2)$ are separated [so $(0,1)\cup (1,2)$ is disconnected]
$[0,1],(1,2)$ are not separated [so $[0,1]\cup (1,2)=\{1\}$] So this doesn't tell us where $[0,1]\cup (1,2)$ is connected or not.
#### Theorem 2.47
Suppose $E\subset \mathbb{R}$
$E$ is connected $\iff \forall (x,y,z)$ with $x,y\in E,x<z<y$ such that $z\in E$.
By negating, this is equivalent to
$E$ is disconnected $\iff \exists (x,y,z)$ with $x,y\in E,x<z<y$ such that $z\notin E$.
Proof:
$\impliedby$
Suppose $\exists (x,y,z)$ with $x,y\in E,x<z<y$ such that $z\notin E$.
Let $A=(-\infty,z)\cap E,B=(z,\infty)\cap E$
**Lemma:** $E\subset F\implies \overline{E}\subset \overline{F}$
Since $A\subset (-\infty,z), \overline{A}\subset (-\infty,z] $
Since $\overline{A}\cap B=\phi$, similarly, $A\cap \overline{B}=\phi$. So $A,B$ are separated. Also they are non empty ($x\in A,y\in B$) and $E=A\cap B$. So $E$ is disconnected.
$\implies$
Suppose $\exists$ nonempty separated $A,B\subset X$ such that $E=A\cup B$.
Our goal is to find $x,y\in E,x<z<y$ such that $z\notin E$.
$A\neq \phi,B\neq \phi\implies \exists x\in A,y\in B$
Without loss of generality, assume $x<y$.
Let $w=sup(A\cup [x,y])$, $w\in \overline{A\cup [x,y]}$ (by **Theorem 2.28**) This implies $w\subset \overline{A}$ and $w\in [x,y]$
Since $A,B$ are separated, $w\notin B$ ($\overline{A}\cup B=\phi$).
Since $y\in B$, $w\in [x,y)$
Consider 2 cases,
**Case 1.** $w\notin A$.
let $z=w$, and $x,y,z$ satisfy the desired properties
**Case 2.** $w\in A$
Since $A,B$ are separated, $w\notin \overline{B}$ ($A\cup \overline{B}=\phi$).
Thus, $\exists r>0$ such that $(w-r,w+r)\cap B=\phi$.
Let $z=w+\frac{r}{2}$, then $x,y,z$ satisfy the desired properties.
QED
## Chapter 3: Numerical Sequences and Series
### Numerical Sequences
#### Notations
Rudin use $\{p_n\}$ to denote a sequence $p_1,p_2$.
To avoid confusion with sets, we use $(p_n)_{n=1}^\infty$ or $(p_n)$
#### Definition 3.1
Let $(X,d)$ be a metric space. Let $(p_n)$ be a sequence in $X$.
Let $p\in X$. We say $(p_x)$ **converges** to $p$ if $\forall \epsilon>0,\exists N\in\mathbb{N}$ such that $\forall n\geq N$, $d(p_n,p)<\epsilon$. ($p_n\in B_\epsilon (p)$)
Notation $\lim_{n\to \infty} p_n=p$, $p_n\to p$
We say $(p_n)$ converges if $\exists p\in X$ such that $p_n\to p$.
i.e. $\exists p\in X$ such that $\forall\epsilon>0,\exists N\in\mathbb{N}$ such that $\forall n\geq N,d(p_n,p)<\epsilon$
We say $(p_n)$ **diverges** if $(p_n)$ doesn't converge.
i.e. $\forall p\in X$, $p_n\cancel{\to} p$
i.e. $\forall p\in X$ such that $\exists \epsilon>0,\forall N\in\mathbb{N}$ such that $\exists n\geq N,d(p_n,p)\geq\epsilon$
#### Definition 3.2
We say a sequence $(p_n)$ is bounded if $\exists x\in X$, $\forall r>0$ such that $\forall n\in \mathbb{N},p_n\in B_r(x)$
Example:
$X=\mathbb{C}$, $s_n=\frac{1}{n}$
Then $s_n\to 0$ i.e. $\forall \epsilon>0 \exists N\in \mathbb{N}$ such that $\forall n\geq N$, $|s_n-0|<\epsilon$.
Proof:
Let $\epsilon >0$ (arbitrary)
Let $N\in \mathbb{N}$ be greater than $\frac{1}{\epsilon}$ (by Archimedean property) e.g. $N=\frac{1}{\epsilon}+1$ (we choose $N$)
Let $n\geq N$ (arbitrary)
Then $|s_n-q|=\frac{1}{n}\leq \frac{1}{N}\leq \epsilon$
QED