159 lines
4.4 KiB
Markdown
159 lines
4.4 KiB
Markdown
# Lecture 14
|
|
|
|
## Review
|
|
|
|
Consider the following statement: If sequence $(p_n)$ converges, then its bounded.
|
|
|
|
1. Will the proof involve an arbitrary $\epsilon>0$ (one that you, the prover, do nto get to choose) or a specific $\epsilon>0$ (on that you can choose)
|
|
We can choose, for example $\epsilon=1$.
|
|
2. Give a proof of the statement.
|
|
|
|
## Continue on sequence
|
|
|
|
### Convergence
|
|
|
|
#### Theorem 3.2(c)
|
|
|
|
$(p_n)$ converges $\implies(p_n)$ is bounded.
|
|
|
|
Proof:
|
|
|
|
Suppose $(p_n)$ converges, then $\exists p\in X$ such that $p_n\to p$. Let $\epsilon=1$, then $\exists N\in \mathbb{N}$ such that $\forall n\geq N,d(p_n,p)<1$. Let $r=1+max\{1,d(p_1,p),d(p_2,p),\dots,d(p_{N-1},p)\}$.
|
|
|
|
Then $\forall n\in \mathbb{N}, d(p_n,p)\leq r$.
|
|
|
|
#### Theorem 3.2
|
|
|
|
Let $(p_n)$ be a sequence in $(X,d)$
|
|
|
|
(a) $p_n\to p\iff \forall r>0,\{n\in \mathbb{N},p_n\notin B_r(p)\}$ is finite
|
|
(b) $p_n\to p; p_n\to p'\implies p=p'$ (converging point is unique)
|
|
(c) $(p_n)$ converges $\implies(p_n)$ is bounded.
|
|
(d) If $E\subset X$ and $p\in \overline{E}$, then $\exist (p_n)\in E$ such that $p_n\to p$.
|
|
|
|
Proof:
|
|
|
|
(a) We need to show:
|
|
|
|
$\forall \epsilon>0 \in N$, $\forall n\geq N,d(p_n,p)<\epsilon$ if and only if $\forall r>0, \{n\in \mathbb{N}:p\notin B_r(p)\}$ is finite.
|
|
|
|
$\implies$
|
|
|
|
Suppose $\forall \epsilon>0 \in N$, $\forall n\geq N,d(p_n,p)<\epsilon$.
|
|
|
|
**We start with arbitrary $r>0$.** and choose $\epsilon=n$
|
|
|
|
$\exists N$ such that $\forall n\geq \mathbb{N},d(p_n,p)<r$.
|
|
|
|
Then $\{n\in \mathbb{N}:p\notin B_r(p)\}<\{1,2,\dots,N-1\}$ is finite.
|
|
|
|
$\impliedby$
|
|
|
|
Suppose $\forall r>0, \{n\in \mathbb{N}:p\notin B_r(p)\}$ is finite. Choosing $r=\epsilon$. We choose $r=\epsilon$. $\{n\in \mathbb{N}:p\notin B_\epsilon(p)\}<\{1,2,\dots,N-1\}$.
|
|
|
|
Let $N=1+max\{n\in \mathbb{N},p_n\notin B_\epsilon(p)\}$
|
|
|
|
Then $\forall n\geq \mathbb{N},p_n\leq B_\epsilon(p)$
|
|
|
|
(b) We'll prove $\forall \epsilon>0,d(p,p')<2\epsilon$ to prove it, let $\epsilon >0$. Then
|
|
|
|
$p_n\to p\implies \exists N$ such that $\forall n\geq \mathbb{N},d(p_n,p)<\epsilon$
|
|
$p_n\to p'\implies \exists N'$ such that $\forall n\geq \mathbb{N},d(p_n,p')<\epsilon$
|
|
|
|
Let $n_0=max\{N,N'\}$, then
|
|
|
|
$$
|
|
d(p,p')\leq d(p_n,p_{n_0})+d(p_{n_0},p')<2\epsilon
|
|
$$
|
|
|
|
And $\forall \epsilon>0,d(p,p')<2\epsilon\implies d(p,p')=0$. So $p=p'$
|
|
|
|
> Remark: We can also prove this with contradiction. Idea $p\neq p'\implies d(p,p')>0$, let $\epsilon=\frac{1}{2}d(p,q')\dots$
|
|
|
|
(d) Suppose $p\in \overline{E}$. Then $\forall n\in \mathbb{N}, B_{\frac{1}{n}}(p)\cap E\neq \phi$. So $\forall n\in \mathbb{N}$, $\exists p_n\in B_{\frac{1}{n}}(p)\cap E$. We'll show $p_n\to p$.
|
|
|
|
Let $\epsilon>0$. Choose $N\in \mathbb{N}$ such that $N>\frac{1}{\epsilon}$. Then if $n\geq N$, $d(p_n,p)<\frac{1}{n}\leq \frac{1}{N}\leq \epsilon$
|
|
|
|
QED
|
|
|
|
#### Theorem 3.3
|
|
|
|
Let $(s_n), (t_n)$ be sequence in $\mathbb{C}$. Suppose $s_n\to s,t_n\to t$
|
|
|
|
(a) $s_n+t_n\to s+t$
|
|
(b) $cs_n\to cs,c+s_n\to c+s$
|
|
(c) $s_nt_n\to st$
|
|
(d) If $\forall n\in \mathbb{N},s_n\neq 0,s\neq 0$, then $\frac{1}{s_n}\to \frac{1}{s}$
|
|
|
|
Proof:
|
|
|
|
(a) We want to prove $\forall \epsilon>0, \exists N$ such that $\forall n\geq N, |(s_n+t_n)-(s+t)|<\epsilon$
|
|
|
|
Let $\epsilon >0$
|
|
|
|
$s_n\to s\implies \exist N_s$ such that $\forall n\geq N_s,|s_n-s|<\frac{\epsilon}{2}$
|
|
$t_n\to t\implies \exist N_t$ such that $\forall n\geq N_t,|t_n-t|<\frac{\epsilon}{2}$
|
|
|
|
Let $N=\max\{N_t,N_s\}$, then if $n\geq N$,
|
|
|
|
$$
|
|
\begin{aligned}
|
|
|(s_n+t_n)-(s+t)|&=|(s_n+s)-(t_n-t)|\\
|
|
&\leq |s_n-s|+|t_n-t|\\
|
|
&< \frac{\epsilon}{2}+\frac{\epsilon}{2}\\
|
|
&<\epsilon
|
|
\end{aligned}
|
|
$$
|
|
|
|
(b) exercise
|
|
|
|
(c) First we'll prove a special case.
|
|
|
|
$$
|
|
s_n\to 0 \textup{ and }t_n\to 0\implies s_nt_n\to 0
|
|
$$
|
|
|
|
Suppose $s_n\to 0$ and $t_n\to 0$.
|
|
|
|
Let $\epsilon >0$
|
|
|
|
$s_n\to 0\implies \exist N_s$ such that $\forall n\geq N_s,|s_n-s|<\sqrt{\epsilon}$
|
|
$t_n\to 0\implies \exist N_t$ such that $\forall n\geq N_t,|t_n-t|<\sqrt{\epsilon}$
|
|
|
|
Let $N=\max\{N_t,N_s\}$, then if $n\geq N$,
|
|
|
|
$$
|
|
|s_n t_n|< \sqrt{\epsilon}^2=\epsilon
|
|
$$
|
|
|
|
Now we prove the general case.
|
|
|
|
$$
|
|
s_n\to s \textup{ and }t_n\to t\implies s_nt_n\to st
|
|
$$
|
|
|
|
Since
|
|
|
|
$$
|
|
s_n t_n=(s_n-s)(t_n-t)+s(t_n-t)+t(s_n-s)
|
|
$$
|
|
|
|
So
|
|
|
|
$$
|
|
\lim_{n\to \infty}(s_nt_n-st)=\lim_{n\to \infty}(s_n-s)(t_n-t)+\lim_{n\to \infty}s(t_n-t)+\lim_{n\to \infty}t(s_n-s)
|
|
$$
|
|
|
|
$\lim_{n\to \infty}(s_n-s)(t_n-t)=0$ by special case
|
|
|
|
$\lim_{n\to \infty}s(t_n-t)=0$ by (b)
|
|
|
|
$\lim_{n\to \infty}t(s_n-s)=0$ by (b)
|
|
|
|
Thought process for (d)
|
|
|
|
$$
|
|
\left|\frac{1}{s_n}-\frac{1}{s}\right|=\frac{|s_n-s|}{|s_n||s|}< \epsilon
|
|
$$
|
|
|
|
If $n$ is large enough, then... |