Files
NoteNextra-origin/content/Math4111/Math4111_L21.md
2025-07-06 12:40:25 -05:00

261 lines
6.6 KiB
Markdown

# Lecture 21
## Review
Recall the alternating series test from calculus: "Suppose $(a_n)^\infty_{n=1}$ is a sequence satisfies the following conditions:
1. The sequence is nonnegative. (For all $n\in \mathbb{N}$, $a_n\geq 0$.)
2. The sequence is decreasing. ($a_1\geq a_2\geq a_3\geq \cdots$)
3. $\lim_{n\to\infty}a_n=0$.
Then $\sum_{n=1}^\infty (-1)^{n+1}a_n$ converges."
Exercise: Show that the statement above is false if we remove the second condition.
[Hint: Use the fact that $\sum_{n=1}^\infty \frac{1}{n}$ diverges.]
Let the sequence $a_n$ be defined as $a_n=\frac{1}{n},a_{n+1}=0$ for all $n\in \mathbb{N}$. This sequence satisfies the 1,3 but not the 2.
And the harmonic series is not convergent.
## New Material
### Other tests for convergence of series
Recall the integration by parts formula:
Let $A(t),a(t),b(t)$ be functions of $t$ and $A'(t)=a(t)$.
Then
$$
\begin{aligned}
\int_p^q a(t)b(t)\,dt&=\int_p^q b(t)A'(t)\,dt\\
&=\left.b(t)A(t)\right|_p^q-\int_p^q A(t)b'(t)\,dt
\end{aligned}
$$
#### Theorem 3.41 Summation by parts
Let $a_n,b_n$ be sequences.
Let $A(n)=\sum_{k=1}^n a_k$. ($A_{-1}=0$). If $0\leq p\leq q$, then
$$
\sum_{n=p}^q a_nb_n=A_q b_q-A_{p-1}b_p-\sum_{n=p}^{q-1}A_n (b_n-b_{n+1})
$$
Proof:
$$
\begin{aligned}
\sum_{n=p}^q a_nb_n&=\sum_{n=p}^q (A_n-A_{n-1})b_n\\
&=\sum_{n=p}^q A_nb_n-\sum_{n=p}^q A_{n-1}b_n\\
&=\sum_{n=p}^q A_nb_n-\sum_{n=p-1}^{q-1}A_n b_{n+1}\\
&=A_qb_q-A_{p-1}b_p-\sum_{n=p}^{q-1} A_nb_n-\sum_{n=p}^{q-1} A_n b_{n+1}\\
&=A_qb_q-A_{p-1}b_p-\sum_{n=p}^{q-1} A_n (b_n-b_{n+1})
\end{aligned}
$$
QED
#### Theorem 3.42 (Dirichlet's test)
Suppose
(a) the partial sum $A_n$ of $\sum a_n$ form a bounded sequence.
(b) $b_0\geq b_1\geq b_2\geq \cdots$ (non-increasing)
(c) $\lim_{n\to\infty}b_n=0$.
Then $\sum a_nb_n$ converges.
Proof:
By Cauchy criterion, it's enough to prove
$\forall \epsilon >0, \exists N\in \mathbb{N}$ such that for all $p\geq q\geq N$,
$$
\left|\sum_{n=p}^q a_nb_n\right|<\epsilon
$$
By the partial sum $A_n$ of $\sum a_n$ form a bounded sequence. Let $\left|A_n\right|\leq M$ for all $n\in \mathbb{N}$.
$$
\begin{aligned}
\left|\sum_{n=p}^q a_nb_n\right|&=\left|A_qb_q-A_{p-1}b_p-\sum_{n=p}^{q-1}A_n (b_n-b_{n+1})\right|\\
&\leq |A_qb_q|+|A_{p-1}b_p|+\sum_{n=p}^{q-1}|A_n (b_n-b_{n+1})|\\
&\leq M|b_q|+M|b_p|+\sum_{n=p}^{q-1}M(b_n-b_{n+1})\\
&=M|b_q|+M|b_p|+M\sum_{n=p}^{q-1}(b_n-b_{n+1})\\
&=M|b_q|+M|b_p|+M(b_p-b_q)\\
&=2M|b_p|
\end{aligned}
$$
Then we let $\epsilon >0$ be given. Since $b_n\to 0$, there exists $N\in \mathbb{N}$ such that for all $n\geq N$, $|b_n|<\frac{\epsilon}{2M}$.
If $q\geq p\geq N$, then
$$
\left|\sum_{n=p}^q a_nb_n\right|\leq 2M|b_p|<\epsilon
$$
So $\sum a_nb_n$ converges.
QED
#### Theorem 3.43 (Alternating series test)
Let $(b_n)^\infty_{n=1}$ be a sequence such that:
(a) $b_1\geq b_2\geq b_3\geq \cdots$ (non-increasing)
(b) $\lim_{n\to\infty}b_n=0$
Then $\sum_{n=1}^\infty (-1)^{n+1}b_n$ converges.
Proof:
Let $a_n=(-1)^{n+1}$
$A_n=\sum_{k=1}^n a_k=1$ if $n$ is odd, $0$ if $n$ is even.
So $|A_n|\leq 1$ for all $n\in \mathbb{N}$.
By Theorem 3.42, $\sum_{n=1}^\infty a_n b_n$ converges.
QED
Example:
Consider the power series $\sum_{n=0}^\infty \frac{z^n}{n}$.
The radius of convergence is $1$.
We claim that the series converges for all $z\in \mathbb{C}$ with $|z|=1$ and $z\neq 1$.
#### Theorem 3.44 Abel's test
Let $(b_n)^\infty_{n=0}$ be a sequence such that:
(a) $b_0\geq b_1\geq b_2\geq \cdots$ (non-increasing)
(b) $\lim_{n\to\infty}b_n=0$
Then if $|z|=1$ and $z\neq 1$, $\sum_{n=0}^\infty b_nz^n$ converges.
Proof:
Fix $z\in \mathbb{C}$ with $|z|=1$ and $z\neq 1$.
Let $a_n=z^n$.
Then $A_n=\sum_{k=0}^n z^k=\frac{1-z^{n+1}}{1-z}$._
$|A_n|\leq \frac{|1-z^{n+1}|}{|1-z|}$ for all $n\in \mathbb{N}$.
By triangle inequality, $|1-z^{n+1}|\leq |1|+|z^{n+1}|=1+|z^{n+1}|$.
And since $|z|=1$, $|z^{n+1}|=|z|^{n+1}=1$.
So $|1-z^{n+1}|\leq 2$.
So $|A_n|\leq \frac{2}{|1-z|}$ for all $n\in \mathbb{N}$.
By Dirichlet's test, $\sum_{n=0}^\infty b_nz^n$
QED
### Absolute convergence
The series $\sum_{n=0}^\infty a_n$ is said to **converge absolutely** if $\sum_{n=0}^\infty |a_n|$ converges.
If $\sum_{n=0}^\infty a_n$ converges but does not converge absolutely, then $\sum_{n=0}^\infty a_n$ is said to **converge conditionally**.
_Absolute convergence are nice but conditionally convergent series are not._
#### Theorem 3.45 (Absolute convergence)
If $\sum_{n=0}^\infty a_n$ converges absolutely, then $\sum_{n=0}^\infty a_n$ converges.
Proof:
Use comparison test.
$$
\sum_{n=0}^\infty |a_n|\geq \sum_{n=0}^\infty a_n
$$
QED
Rearrangement of series:
Let $f:\mathbb{N}\to \mathbb{N}$ be a bijection.
If $\sum_{n=0}^\infty a_n$ is a sequence and $b_n=a_{f(n)}$, then $(b_n)^\infty_{n=0}$ is a rearrangement of $(a_n)^\infty_{n=0}$.
If $\sum_{n=0}^\infty a_n$ converges absolutely, then any rearrangement of $\sum_{n=0}^\infty a_n$ converges to the same sum.
Example:
$a_n=\frac{(-1)^{n+1}}{n}$. $b_n=a_{f(n)}$.
|n|1|2|3|4|5|6|7|8|9|
|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|
|$f(n)$|1|2|4|3|6|8|5|10|12|
|$b_n$|1|-1/2|-1/4|1/3|-1/6|-1/8|1/5|-1/10|-1/12|
$$
\sum_{n=1}^\infty a_n=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots=\log 2
$$
$$
\begin{aligned}
\sum_{n=1}^\infty b_n&=1-\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{6}-\frac{1}{8}+\frac{1}{5}-\frac{1}{10}-\frac{1}{12}+\cdots\\
&=\left(1-\frac{1}{2}\right)-\frac{1}{4}+\left(\frac{1}{3}-\frac{1}{6}\right)-\frac{1}{8}+\left(\frac{1}{5}-\frac{1}{10}\right)-\frac{1}{12}+\cdots\\
&=\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+\frac{1}{10}-\frac{1}{12}+\cdots\\
&=\frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots\right)\\
&=\frac{1}{2}\log 2
\end{aligned}
$$
You cannot always rearrange series.
But, if $\sum_{n=0}^\infty a_n$ converges absolutely, then you can rearrange the series.
#### Theorem 3.55
Let $(a_n)^\infty_{n=0}$ be a sequence in $\mathbb{C}$ such that $\sum_{n=0}^\infty |a_n|$ converges absolutely.
Then any rearrangement of $\sum_{n=0}^\infty a_n$ converges absolutely to the same sum.
$$
\sum_{n=0}^\infty a_n=\sum_{n=0}^\infty a_{f(n)}
$$
Ideas of proof:
Let $f:\mathbb{N}\to \mathbb{N}$ be a bijection.
and let $b_n=a_{f(n)}$.
Let $s_n=\sum_{k=0}^n a_k,t_n=\sum_{k=0}^n b_k=\sum_{k=0}^n a_{f(k)}$.
$I_n=\{1,2,\cdots,n\}$.
$J_n=\{f(1),f(2),\cdots,f(n)\}$.
$$
\begin{aligned}
s_n-t_n&=\sum_{k=0}^n a_k-\sum_{k=0}^n a_{f(k)}\\
&=\sum_{k\in I_n} a_k-\sum_{k\in J_n} a_k\\
&= \sum_{k\in I_n\setminus J_n} a_k+\sum_{k\in J_n\setminus I_n} a_k\\
&\leq \sum_{k\in I_n\setminus J_n} |a_k|+\sum_{k\in J_n\setminus I_n} |a_k|
\end{aligned}
$$
Key observation:
For every $n\in \mathbb{N}$, there exists a $p$ such that $\{1,2,\cdots,n\}\subset I_n\cap J_n$.
Then $|s_n-t_n|\leq \sum_{k=N+1}^\infty |a_k|$.
QED