Files
NoteNextra-origin/content/Math416/Math416_L27.md
2025-07-06 12:40:25 -05:00

5.8 KiB

Math416 Lecture 27

Continue on Application to evaluate \int_{-\infty}^\infty \frac{\cos x}{1+x^4}dx

Consider the function$f(z)=\frac{e^{iz}}{1+z^4}=\frac{\cos z+i\sin z}{1+z^4}$.

Our desired integral can be evaluated by \int_{-R}^R f(z)dz

To evaluate the singularity, z^4=-1 has four roots by the De Moivre's theorem.

z^4=-1=e^{i\pi+2k\pi i} for k=0,1,2,3.

So z=e^{i\theta} for \theta=\frac{\pi}{4}+\frac{k\pi}{2} for k=0,1,2,3.

So the singularities are z=e^{i\pi/4},e^{i3\pi/4},e^{i5\pi/4},e^{i7\pi/4}.

Only z=e^{i\pi/4},e^{i3\pi/4} are in the upper half plane.

So we can use the semi-circle contour to evaluate the integral. Name the path as \gamma.

\int_\gamma f(z)dz=2\pi i\left[\operatorname{Res}_{z=e^{i\pi/4}}(f)+\operatorname{Res}_{z=e^{i3\pi/4}}(f)\right].

The two poles are simple poles.

\operatorname{Res}_{z_0}(f)=\lim_{z\to z_0}(z-z_0)f(z).

So


\begin{aligned}
\operatorname{Res}_{z=e^{i\pi/4}}(f)&=\lim_{z\to e^{i\pi/4}}(z-e^{i\pi/4})\frac{e^{iz}}{1+z^4}\\
&=\frac{(z-e^{i\pi/4})e^{iz}}{(z-e^{i\pi/4})(z-e^{i3\pi/4})(z-e^{i5\pi/4})(z-e^{i7\pi/4})}\\
&=\frac{e^{ie^{i\pi/4}}}{(e^{i\pi/4}-e^{i3\pi/4})(e^{i\pi/4}-e^{i5\pi/4})(e^{i\pi/4}-e^{i7\pi/4})}
\end{aligned}

A short cut goes as follows:

We know p(z)=1+z^4 has four roots z_1,z_2,z_3,z_4.


\lim_{z\to z_0}\frac{(z-z_0)}{p(z)}=\frac{1}{p'(z_0)}

So


\operatorname{Res}_{z=e^{i\pi/4}}(f)=\frac{e^{ie^{i\pi/4}}}{4e^{i3\pi/4}}

Similarly,


\operatorname{Res}_{z=e^{i3\pi/4}}(f)=\frac{e^{ie^{i3\pi/4}}}{4e^{i\pi/4}}

So the sum of the residues is


\begin{aligned}
\operatorname{Res}_{z=e^{i\pi/4}}(f)+\operatorname{Res}_{z=e^{i3\pi/4}}(f)&=\frac{e^{ie^{i\pi/4}}}{4e^{i3\pi/4}}+\frac{e^{ie^{i3\pi/4}}}{4e^{i\pi/4}}\\
&=\frac{e^{\frac{i}{\sqrt{2}}} e^{-\frac{1}{\sqrt{2}}}}{4[-\frac{1}{\sqrt{2}}+i\frac{1}{\sqrt{2}}]}+\frac{e^{-\frac{i}{\sqrt{2}}}-e^{-\frac{1}{\sqrt{2}}}}{4[\frac{1}{\sqrt{2}}+i\frac{1}{\sqrt{2}}]}\\
&=\frac{\pi\sqrt{2}}{2}e^{-\frac{1}{\sqrt{2}}}(\cos\frac{1}{\sqrt{2}}+\sin\frac{1}{\sqrt{2}})
\end{aligned}

For the semicircle part, we can bound our estimate by


\left|\int_{C_R}f(z)dz\right|\leq\pi R\max_{z\in C_R}|f(z)|\leq \pi \frac{1}{R^4}\to 0

as R\to\infty.

So


\int_{-\infty}^\infty\frac{\cos x}{1+x^4}dx=\frac{\pi\sqrt{2}}{2}e^{-\frac{1}{\sqrt{2}}}(\cos\frac{1}{\sqrt{2}}+\sin\frac{1}{\sqrt{2}})

Big idea of this course

f is holomorphic \iff f has complex derivative.

f is holomorphic \iff f satisfies Cauchy-Riemann equations \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} and \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}

f is holomorphic \iff f is analytic (is locally given by power series). The power series is integrable/differentiable term by term in the radius of convergence.

Laurent series

Similar to power series both with annulus of convergence.

f(z)=\sum_{n=-\infty}^\infty a_n(z-z_0)^n for z\in A(z_0,r,R).

Identity theorem: If f is holomorphic on a domain \Omega, it is uniquely determined by its values on any sets with a limit point in \Omega.

Cauchy's Theorem


\int_\gamma f(z)dz=0

If f is holomorphic on \Omega and \gamma is a closed path in \Omega and \gamma\cup \operatorname{int}\gamma\subset \Omega, then \int_\gamma f(z)dz=0.

Favorite estimate


\left|\int_\gamma f(z)dz\right|\leq \sup_{z\in\gamma}|f(z)|\cdot \operatorname{length}(\gamma)

Cauchy's Integral Formula


f(z_0)=\frac{1}{2\pi i}\int_\gamma \frac{f(z)}{z-z_0}dz

where z_0\in \operatorname{int}\gamma and \gamma is a closed path.

Extension: If f is holomorphic on \Omega and z_0\in \Omega, then f is infinitely differentiable and


f^{(n)}(z_0)=\frac{n!}{2\pi i}\int_\gamma \frac{f(z)}{(z-z_0)^{n+1}}dz

Residue theorem

If f is holomorphic on \Omega except for a finite number of isolated singularities z_1,z_2,\dots,z_p, and \Gamma is a curve inside \Omega that don't pass through any of the singularities (\Gamma\subset \Omega\setminus \{z_1,z_2,\dots,z_p\}), then


\int_\Gamma f(z)dz=2\pi i\sum_{z_i}\operatorname{ind}_{\Gamma}(z_i) \operatorname{res}_{z_i}(f)

Harmonic conjugate

Locally, always have harmonic conjugates.

Globally can do this iff domain is simply connected.

Schwarz-pick's Lemma:

If f maps D to D and f(0)=0, then |f(z)|\leq |z| for all z\in D. and |f'(0)|\leq 1.

For mobius map, f:D\to D holds, \varphi(f(z),f(w))=\varphi(z,w) for all z,w\in D.


\varphi(z,w)=\frac{z-w}{1-\overline{w}z}

Convergence

Types of convergence

Converge pointwise (Not very strong):

\forall x\in X, \lim_{n\to\infty}f_n(x)=f(x).

Or, \forall x\in X, \forall \epsilon>0, \exists N>0, \forall n\geq N \implies |f_n(x)-f(x)|<\epsilon.

Converge uniformly (Much better):

\forall \epsilon>0, \exists N>0, \forall n\geq N \implies \forall x\in X, |f_n(x)-f(x)|<\epsilon.

Converge locally uniformly (Strong):

\forall x\in X, \exists open x\in U, such that f_n\to f uniformly on U.

Converge uniformly on compact subsets (Good enough for local properties):

\forall compact K\subset X, f_n\to f uniformly on K.

Weierstrass' Theorem

If f_n\in O(\Omega) and f_n\to f locally uniformly, then f\in O(\Omega).

Cauchy-Hadamard's Theorem

For a power series, \sum_{n=0}^\infty a_n(z-z_0)^n, the radius of convergence is


R=\frac{1}{\limsup_{n\to\infty}|a_n|^{1/n}}

On B(z_0,R), the series converges locally uniformly and absolutely.

Argument and Logarithm

\arg z is any \theta such that z=re^{i\theta}.

\operatorname{Arg} z is the principal value of the argument, -\pi<\operatorname{Arg} z\leq \pi.

\log z is the principal value of the logarithm, \log z=\ln |z|+i\arg z.

\operatorname{Log} z is the set of all logarithms of z, \operatorname{Log} z=\{\log z+2k\pi i: k\in\mathbb{Z}\}.

END