3.5 KiB
Lecture 14
Chapter III Linear maps
Assumption: U,V,W are vector spaces (over \mathbb{F})
Matrices 3C
Review
Proposition 3.76
M(Tv)=M(T)M(v)
Theorem 3.78
Let V,W be finite dimensional vector space, and T\in \mathscr{L}(V,W) then dim\ range\ T=column\ rank (M(T))=rank(M(T))
Proof:
range=Span\{Tv_1,...,Tv_n\} compare to Span\{M(T)_{\cdot,1},...,M(T)_{\cdot, n}\}=Span\{M(T)M(v_1),...,M(T)M(v_n)\}=Span\{M(Tv_1),...,M(Tv_n)\}
Since M is a isomorphism, then the theorem makes sense.
Change of Basis
Definition 3.79, 3.80
The identity matrix
I=\begin{pmatrix}
1.& 0\\
0& '1\\
\end{pmatrix}
The inverse matrix of an invertible matrix A denoted A^{-1} is the matrix such that
AA^{-1}=I=A^{-1}A
Question: Let u_1,...,u_n and v_1,...,v_n be two bases for V. What is M(I,(u_1,...,u_n),(v_1,...,v_n)),I\in \mathscr{L}(V)
Proposition 3.82
Let u_1,...,u_n and v_1,...,v_n be bases of V, then M(I,(u_1,...,u_n),(v_1,...,v_n)),I\in \mathscr{L}(V) and M(I,(v_1,...,v_n),(u_1,...,u_n)),I\in \mathscr{L}(V) are inverse to each other.
Proof:
M(I,(u_1,...,u_n),(v-1,...,v_n)),I\in \mathscr{L}(V) M(I,(v-1,...,v_n),(u_1,...,u_n))=M(I,(u_1,...,u_n),(u_1,...,u_n))
Theorem 3.84 Change of Basis
Let u_1,...,u_n and v_1,...,v_n be two bases for V and T\in \mathscr{L}(v), A=M(T,(u_1,...,u_n)), B=M(T,(v_1,...,v_n)), C=M(I,(u_1,...,u_n),(v_1,...,v_n)), then A=C^{-1}BC
Theorem 3.86
Let T\in \mathscr{L}(v) be an invertible linear map, then M(T^{-1})=M(T)^{-1}
Products and Quotients of Vector Spaces 3E
Goals: To construct vectors spaces from other vector spaces.
Definition 3.87
Suppose V_1,...,V_m vectors spaces over some field \mathbb{F}, then the product is given by
V_1\times ...\times V_n=\{(v_1,v_2,...,v_n)\vert v_1\in V_1, v_2\in V_2,...,v_n\in V_n\}
with addition given by
(v_1,...,v_n)+(u_1,...,u_n)=(v_1+u_1,...,v_n+u_n)
and scalar multiplication
\lambda (v_1,...,v_n)=(\lambda v_1,...,\lambda v_n),\lambda \in \mathbb{F}
Theorem 3.89
If v_1,...,v_n are vectors paces over \mathbb{F} then V_1\times ...\times V_n is a vector space over \mathbb{F}
Example:
V=\mathscr{P}_2(\mathbb{R})\times \mathbb{R}^2=\{(p,v)\vert p\in \mathscr{P}_2(\mathbb{R}), v\in \mathbb{R}^2\}=\{(a_0+a_1x+a_2x,(b,c))\vert a_0,a_1,a_2,b,c\in \mathbb{R}\}
A basis for V would be (1,(0,0)),(x,(0,0)),(x^2,(0,0)),(0,(1,0)),(0,(0,1))
Theorem 3.92
dim(V_1\times ...\times V_n)=dim(V_1)+...+dim(V_n)
Sketch of proof:
take a basis for each V_k, make them vectors in the product then combine the entire list of vector to be basis.
Example:
\mathbb{R}^2\times \mathbb{R}^3=\{((a,b),(c,d,e))\vert a,b,c,d,e\in \R\}
\mathbb{R}^2\times \mathbb{R}^3\cong \mathbb{R}^5,((a,b),(c,d,e))\mapsto(a,b,c,d,e)
Theorem 3.93
Let V_1,...,V_m\subseteq V, define \Gamma: V_1\times...\times V_m\to V_1+...+V_m. \Gamma(v_1,...,v_n)=v_1+...+v_n then \Gamma is always surjective. And it is injective if and only if V_1+...+V_m is a direct sum.
Sketch of the proof:
injective \iff null\ T\{ (0,...,0) \} \iff the only way to write 0=v_1,...,v_m is v_1=...=v_n=0 \iff then V_1+...+V_m is a direct sum
Theorem 3.94
V_1+...+V_m is a direct sum if and only if dim(V_1+...+V_m)=dim(V_1)+...+dim(V_m)
Proof:
Use \Gamma above is an isomorphism \iff V_1+...+V_m is a direct sum
Use \Gamma above is an isomorphism \implies dim(V_1+...+V_m)=dim(V_1)+...+dim(V_m)