3.1 KiB
Lecture 16
Chapter IV Polynomials
\mathbb{F} denotes \mathbb{R} or $\mathbb{C}$
Review
Products and Quotients of Vector Spaces 3E
Theorem 3.107
Let T\in \mathscr{L}(V,W), then define \tilde{T}:V/null\ T\to W, given by \tilde{T}(v+null\ T)=Tv
a) \tilde{T}\circ \pi=T where \pi: V/null\ T
b) \tilde{T} is injective
c) range\ T=range\ \tilde{T}
d) V/null\ T and range\ T are isomorphic
Example:
Consider D:\mathscr{P}_M(\mathbb{F})\to \mathscr{P}_{m-1}(\mathbb{F}) be differentiation map
D is surjective by D is not injective $null\ D=${constant polynomials}
\tilde{D}:\mathscr{P}_M(\mathbb{F})/ constant polynomials \to \mathscr{P}_{m-1}(\mathbb{F})
This map (\tilde{D}) is injective since range\ \tilde{D}=range\ D=\mathscr{P}_{m-1}(\mathbb{F})
\tilde{D}^{-1}:\mathscr{P}_{m-1}(\mathbb{F})\to \mathscr{P}_M(\mathbb{F})/ constant polynomials (anti-derivative)
New materials
Complex numbers 1A
Definition 1.1
Complex numbers
z=a+bi is a complex number for a,b\in \mathbb{R}, (Re\ z=a,Im\ z=b)
\bar{z}=a-bi complex conjugate |z|=\sqrt{a^2+b^2}
Properties 1.n
z+\bar{z}=2az-\bar{z}=2bz\bar{z}=|z|^2\overline{z+w}=\bar{z}+\bar{w}\overline{zw}=\bar{z}\bar{w}\bar{\bar{z}}=z|a|\leq |z||b|\leq |z||\bar{z}|=|z||zw|=|z||w||z+w|\leq |z|+|w|
Polynomials 4A
p(x)=\sum_{i=0}^{n}a_i x^i
Lemma 4.6
If p is a polynomial and \lambda is a zero of p, then p(x)=(x-\lambda)q(x) for some polynomial q(x) with deg\ q=deg\ p -1
Lemma 4.8
If m=deg\ p,p\neq 0 then p has at most m zeros.
Sketch of Proof:
Induction using 4.6
Division Algorithm 4B
Theorem 4.9
Suppose p,s\in \mathscr{P}(\mathbb{F}),s\neq 0. Then there exists a unique q,r\in \mathscr{P}(\mathbb{F}) such that p=sq+r, and deg\ r\leq deg\ s
Proof:
Let n=deg\ p,m=deg\ s if n< m, we are done q=0,r=p.
Otherwise (n\leq m) consider 1,z,...,z^{m-1},s,zs,...,z^{r-m}s. is a basis of \mathscr{P}_n(\mathbb{F}).
Then there exists a unique a_1,...,a_n\in\mathbb{F} such that p(z)=a_0+a_1z+...+a_{m-1}z^{m-1}+a_m s+...+ a_n z^{n-m}s=(a_0+a_1z+...+a_{m-1}z^{m-1})+s(a_m +...+a_n z^{n-m})
let r=(a_0+a_1z+...+a_{m-1}z^{m-1}), q=(a_m +...+a_n z^{n-m}) then we are done.
Zeros of polynomial over \mathbb{C} 4C
Theorem 4.12 Fundamental Theorem of Algorithm
Every non-constant polynomial over \mathbb{C} has at least one root.
Theorem 4.13
If p\in \mathscr{P}(\mathbb{C}) then p has a unique factorization up to order as p(z)=c(z-\lambda_1)(z-\lambda_m) for c,\lambda_1,...,\lambda_m\in \mathbb{C}
Sketch of Proof:
(4.12)+(4.6)
Zeros of polynomial over \mathbb{R} 4D
Proposition 4.14
If p\in \mathscr{P}(\mathbb{C}) with real coefficients, then if p(\lambda )=0 then p(\bar{\lambda})=0
Theorem 4.16 Fundamental Theorem of Algorithm for real numbers
If p is a non-constant polynomial over \mathbb{R} the p has a unique factorization
p(x)=c(x-\lambda_1)...(x-\lambda_m)(x^2+b_1 x+c_1)...(x^2+b_m x+c_m)
with b_k^2\leq 4c_k