3.0 KiB
Lecture 30
Chapter VII Operators on Inner Product Spaces
Assumption: V,W are finite dimensional inner product spaces.
Self adjoint and Normal Operators 7A
Definition 7.1
Suppose T\in \mathscr{L}(V,W). The adjoint is the function T^*:W\to V such that
\langle Tv,w \rangle=\langle v,T^*w \rangle, \forall v\in V, w\in W
Theorem 7.4
Suppose T\in \mathscr{L}(V,W) then T^*\in \mathscr{L}(W,V)
Proof:
Additivity, let w_1,w_2\in W. We want to show T^*(w_1+w_2)T^*w_1+T^*w_2
Let v\in V, then
\begin{aligned}
\langle v,T^*(w_1+w_2) \rangle &=\langle v,T^*(w_1+w_2) \rangle\\
&=\langle Tv,w_1+w_2 \rangle\\
&=\langle Tv,w_1 \rangle+\langle Tv,w_2 \rangle\\
&=\langle v,T^*w_1 \rangle+\langle v,T^* w_2 \rangle\\
&=\langle v,T^*w_1 +T^* w_2 \rangle\\
\end{aligned}
Note: If \langle v,u \rangle=\langle v,u'\rangle, forall v\in V then u=u'
Homogeneity: same as idea above.
Theorem 7.5
Suppose S,T\in \mathscr{L}(V,W), and \lambda\in \mathbb{F}, then
(a) (S+T)^*=S^*+T^*
(b) (ST)^*=T^* S^*
(c) (\lambda T)^*=\bar{\lambda}S^*
(d) I^*=I
(e) (T^*)^*=T
(f) If T is invertible, then (T^*)^{-1}=(T^{-1})^*
Proof:
(d) \langle (ST)v,u \rangle=\langle S(Tv),u \rangle=\langle Tv,S^*u \rangle=\langle v,T^*S^*u \rangle
Theorem 7.6
Suppose T\in\mathscr{L}(V,W), then
(a) null\ T^*=(range\ T)^\perp
(b) null\ T=(range\ T^*)^\perp
(c) range\ T^*=(null\ T)^\perp
(d) range\ T=(null\ T^*)^\perp
Proof:
(a)\iff (c) since we can use Theorem 7.5 (c) while replacing T with T^*. Same idea give (b)\iff (d). Also (a)\iff (d) Since (V^\perp)^\perp=V
Now we prove (a). Suppose w\in null\ T^*\iff T^*w=0
T^*w=0\iff \langle v,T^* w\rangle=0\forall v\in V\iff \langle Tv,w\rangle =0\forall v\in V\iff w\in (range\ T)^\perp
Definition 7.7
The conjugate transpose of a m\times n matrix A is the n\times m matrix denoted A^* given the conjugate of the transpose.
ie. (A^*)_{j,k}=A_{j,k}
Theorem 7.9
Let T\in \mathscr{L}(V,W) and e_1,..,e_n an orthonormal basis of V, f_1,...,f_m be an orthonormal basis of W. Then M(T^*,(f_1,...,f_m),(e_1,..,e_n))=M(T,(f_1,...,f_m),(e_1,..,e_n))^*
Proof:
The k-th column of T is given by writing Te_k. in the basis f_1,...,f_m. ie. the k,j entry of M(T) is \langle Te_k,f_j \rangle, but then the j,k entry of M(T^*) is \langle T^*f,e_k \rangle. But \langle Te_k,f_j\rangle=\langle e_k,T^*f_j\rangle=\overline{\langle T^*f_j,e_k\rangle}
Example:
Suppose T(x_1,x_2,x_3)=(x_2+3x_3,2x_1)
\begin{aligned}
\langle T(x_1,x_2,x_3),(y_1,y_2)\rangle&=\langle (x_2+3x_3,2x_1),(y_1,y_2)\rangle\\
&=(x_2+3x_3,2x_1)\bar{y_1},(x_2+3x_3,2x_1)\bar{y_2}\\
&=\bar{y_1}x_2+3\bar{y_1}x_3+2\bar{y_2}x_1\\
&=\langle (x_1,x_2,x_3),(2y_2,y_1,3y_1)\rangle
\end{aligned}
So T^*(y_1,y_2)=(2y_2,y_1,3y_1)
Idea: Reisz Representation gives a function from V to V' (3.118) tells us given T\in \mathscr{L}(V,W), we have