Files
NoteNextra-origin/content/Math429/Math429_L30.md
2025-07-06 12:40:25 -05:00

105 lines
3.0 KiB
Markdown

# Lecture 30
## Chapter VII Operators on Inner Product Spaces
**Assumption: $V,W$ are finite dimensional inner product spaces.**
### Self adjoint and Normal Operators 7A
#### Definition 7.1
Suppose $T\in \mathscr{L}(V,W)$. The adjoint is the function $T^*:W\to V$ such that
$$
\langle Tv,w \rangle=\langle v,T^*w \rangle, \forall v\in V, w\in W
$$
#### Theorem 7.4
Suppose $T\in \mathscr{L}(V,W)$ then $T^*\in \mathscr{L}(W,V)$
Proof:
Additivity, let $w_1,w_2\in W$. We want to show $T^*(w_1+w_2)T^*w_1+T^*w_2$
Let $v\in V$, then
$$
\begin{aligned}
\langle v,T^*(w_1+w_2) \rangle &=\langle v,T^*(w_1+w_2) \rangle\\
&=\langle Tv,w_1+w_2 \rangle\\
&=\langle Tv,w_1 \rangle+\langle Tv,w_2 \rangle\\
&=\langle v,T^*w_1 \rangle+\langle v,T^* w_2 \rangle\\
&=\langle v,T^*w_1 +T^* w_2 \rangle\\
\end{aligned}
$$
Note: If $\langle v,u \rangle=\langle v,u'\rangle$, forall $v\in V$ then $u=u'$
Homogeneity: same as idea above.
#### Theorem 7.5
Suppose $S,T\in \mathscr{L}(V,W)$, and $\lambda\in \mathbb{F}$, then
(a) $(S+T)^*=S^*+T^*$
(b) $(ST)^*=T^* S^*$
(c) $(\lambda T)^*=\bar{\lambda}S^*$
(d) $I^*=I$
(e) $(T^*)^*=T$
(f) If $T$ is invertible, then $(T^*)^{-1}=(T^{-1})^*$
Proof:
(d) $\langle (ST)v,u \rangle=\langle S(Tv),u \rangle=\langle Tv,S^*u \rangle=\langle v,T^*S^*u \rangle$
#### Theorem 7.6
Suppose $T\in\mathscr{L}(V,W)$, then
(a) $null\ T^*=(range\ T)^\perp$
(b) $null\ T=(range\ T^*)^\perp$
(c) $range\ T^*=(null\ T)^\perp$
(d) $range\ T=(null\ T^*)^\perp$
Proof:
$(a)\iff (c)$ since we can use **Theorem 7.5** (c) while replacing $T$ with $T^*$. Same idea give $(b)\iff (d)$. Also $(a)\iff (d)$ Since $(V^\perp)^\perp=V$
Now we prove (a). Suppose $w\in null\ T^*\iff T^*w=0$
$T^*w=0\iff \langle v,T^* w\rangle=0\forall v\in V\iff \langle Tv,w\rangle =0\forall v\in V\iff w\in (range\ T)^\perp$
#### Definition 7.7
The **conjugate transpose** of a $m\times n$ matrix $A$ is the $n\times m$ matrix denoted $A^*$ given the conjugate of the transpose.
ie. $(A^*)_{j,k}=A_{j,k}$
#### Theorem 7.9
Let $T\in \mathscr{L}(V,W)$ and $e_1,..,e_n$ an orthonormal basis of $V$, $f_1,...,f_m$ be an orthonormal basis of $W$. Then $M(T^*,(f_1,...,f_m),(e_1,..,e_n))=M(T,(f_1,...,f_m),(e_1,..,e_n))^*$
Proof:
The k-th column of $T$ is given by writing $Te_k$. in the basis $f_1,...,f_m$. ie. the $k,j$ entry of $M(T)$ is $\langle Te_k,f_j \rangle$, but then the $j,k$ entry of $M(T^*)$ is $\langle T^*f,e_k \rangle$. But $\langle Te_k,f_j\rangle=\langle e_k,T^*f_j\rangle=\overline{\langle T^*f_j,e_k\rangle}$
Example:
Suppose $T(x_1,x_2,x_3)=(x_2+3x_3,2x_1)$
$$
\begin{aligned}
\langle T(x_1,x_2,x_3),(y_1,y_2)\rangle&=\langle (x_2+3x_3,2x_1),(y_1,y_2)\rangle\\
&=(x_2+3x_3,2x_1)\bar{y_1},(x_2+3x_3,2x_1)\bar{y_2}\\
&=\bar{y_1}x_2+3\bar{y_1}x_3+2\bar{y_2}x_1\\
&=\langle (x_1,x_2,x_3),(2y_2,y_1,3y_1)\rangle
\end{aligned}
$$
So $T^*(y_1,y_2)=(2y_2,y_1,3y_1)$
Idea: Reisz Representation gives a function from $V$ to $V'$ (3.118) tells us given $T\in \mathscr{L}(V,W)$, we have