Files
NoteNextra-origin/content/Math429/Math429_L31.md
2025-07-06 12:40:25 -05:00

3.1 KiB

Lecture 31

Chapter VII Operators on Inner Product Spaces

Assumption: V,W are finite dimensional inner product spaces.

Self adjoint and Normal Operators 7A

Definition 7.10

An operator T\in\mathscr{L}(V) is self adjoint if T=T^*. ie. \langle Tv,u\rangle=\langle v,Tu \rangle for u,v\in V.

Example:

Consider $M(T)=\begin{pmatrix} 2 & i\ -i& 3 \end{pmatrix}$, Then


M(T^*)=M(T)^*=\begin{pmatrix}
    \bar{2},\bar{-i}\\
    \bar{i},\bar{3}
\end{pmatrix}=\begin{pmatrix}
    2 &i\\
    -i& 3
\end{pmatrix}=M(T)

So T=T^* so T is self adjoint

Theorem 7.12

Every eigenvalue of a self adjoint operator T is real.

Proof:

Suppose T is self adjoint and \lambda is an eigenvalue of T, and v is an eigenvector with eigenvalue \lambda.

Consider \langle Tv,v\rangle


\langle Tv, v\rangle=
\langle v, Tv\rangle=
\langle v,\lambda v\rangle=
\bar{\lambda}\langle v,v\rangle=\bar{\lambda}||v||^2

\langle Tv, v\rangle=
\langle \lambda v, v\rangle=
\langle v, v\rangle=
\lambda\langle v,v\rangle=\lambda||v||^2\\

So \lambda=\bar{\lambda}, so \lambda is real.

NoteL (7.12) is only interesting for complex vector spaces.

Theorem 7.13

Suppose V is a complex inner product space and T\in\mathscr{L}(V), then


\langle Tv, v\rangle =0 \textup{ for every }v\in V\iff T=0

Note: (7.13) is False over real vector spaces. The counterexample is T the rotation by 90\degree operator. ie. $M(T)=\begin{pmatrix} 0&-1\ 1&0 \end{pmatrix}$

Proof:

\Rightarrow Suppose u,w\in V


\begin{aligned}
\langle Tu,w \rangle&=\frac{\langle T(u+w),u+w\rangle -\langle T(u-w),u-w\rangle}{4}+\frac{\langle T(u+iw),u+iw\rangle -\langle T(u-iw),u-iw\rangle}{4}i\\
&=0
\end{aligned}

Since w is arbitrary \implies Tu=0, \forall u\in V\implies T=0.

Theorem 7.14

Suppose V is a complex inner product space and T\in \mathscr{L}(V) thne


T \textup{ is self adjoint }\iff \langle Tv, v\rangle \in \mathbb{R} \textup{ for every} v \in V

Proof:


\begin{aligned}
    T\textup{ is self adjoint}&\iff T-T^*=0\\
    &\iff \langle (T-T^*)v,v\rangle =0 (\textup{ by \textbf{7.13}})\\
    &\iff \langle Tv, v\rangle -\langle T^*v,v \rangle =0\\
    &\iff \langle Tv, v\rangle -\overline{\langle T,v \rangle} =0\\
    &\iff\langle Tv,v\rangle \in \mathbb{R}
\end{aligned}

Theorem 7.16

Suppose T is a self adjoint operator, then \langle Tv, v\rangle =0,\forall v\in V\iff T=0

Proof:

Note the complex case is Theorem 7.13, so assume V is a real vector space. Let u,w\in V consider

\Rightarrow


\langle Tu,w\rangle=\frac{\langle T(u+w),u+w\rangle -\langle T(u-w),u-w\rangle}{4}=0

We set \langle Tw,u\rangle=\langle w,Tu\rangle =\langle Tu,w\rangle

Normal Operators

Definition 7.18

An operator T\in \mathscr{L}(V) on an inner product space is normal if TT^*=T^*T ie. T commutes with its adjoint

Theorem (7.20)

An operator T is normal if and only if


||Tv||=||T^*v||,\forall v\in V

Proof:

The key idea is that T^*T-TT^* is self adjoint.


(T^*T-TT^*)^*=(T^*T)^*-(TT^*)^*=T^*T-TT^*