3.0 KiB
Lecture 18
Chapter III Linear maps
Assumption: U,V,W are vector spaces (over \mathbb{F})
Duality 3F
Review
Theorem 3.128, 3.130
Let V,W be a finite dimensional vector space, T\in \mathscr{L}(V,W)
a) null\ T'=(range\ T)^0, dim (null\ T')=dim\ null\ T+dim\ W-dim\ V
b) range\ T'=(null\ T)^0, dim (range\ T')=dim (range\ T)
c) dim(range\ T')= dim(range\ T)
New materials
Theorem 3.129, 3.131
Let V,W be a finite dimensional vector space, T\in \mathscr{L}(V,W)
a) T is injective \iff T' is surjective
b) T is surjective \iff T' is injective
Proof:
T is injective \iff null\ T=\{0\}\iff range\ T'=V'\iff T' surjective
T is surjective \iff range\ T=W\iff null\ T'=0\iff T' injective
Theorem 3.132
Let V,W be a finite dimensional vector space, T\in \mathscr{L}(V,W)
Then M(T')=(M(T))^\top. Where the basis for M(T)' are the dual basis to the ones for M(T)
Theorem 3.133
col\ rank\ A=row\ rank\ A
Proof: col\ rank\ A=col\ rank\ (M(T))=dim\ range\ T=dim\ range\ T'=dim\ range\ T'=col\ rank\ (M(T'))=col\ rank\ (M(T)^\top)=row\ rank\ (M(T))
Chapter V Eigenvalue and Eigenvectors
Invariant Subspaces 5A
Goal: Study maps in \mathscr{L}(V) (linear operations)
Question: Given T\in \mathscr{L}(V) when can I restrict to U\subseteq V such that T\vert_U\in \mathscr{L}(U)
Definition 5.2
Suppose T\in \mathscr{L}(V) and U\subseteq V a subspace is said to be invariant under T if Tu\in U,\forall u\in U
Example:
For any T\in \mathscr{L}(V), the following are invariance subspaces.
\{0\}Vnull\ T,v\in null\ T\implies Tv=0\in null\ Trange\ T,v\in range\ T\subseteq V \implies Tv\in range\ T
Definition 5.5
Suppose T\in\mathscr{L}(V), then for \lambda \in \mathbb{F} is an eigenvalue of T if \exists v\in V such that v\neq 0 and Tv=\lambda v.
Definition 5.8
Suppose T\in\mathscr{L}(V) and \lambda \in \mathbb{F} is an eigenvalue of T. The v\in V is an eigenvector of T corresponding to \lambda if v\neq 0 and Tv=\lambda v
Note: if \lambda is an eigenvalue of T and v an eigenvector corresponding to \lambda, then U=Span(V) is an invariant subspace. and T\vert_U is multiplication by \lambda
Proposition 5.7
V is finite dimensional T\in \mathscr{L},\lambda\in \mathbb{F} then the following are equivalent: (TFAE)
a) \lambda is an eigenvalue
b) T-\lambda I is not injective
c) T-\lambda I is not surjective
d) T-\lambda I is not invertible
Proof:
(a)\iff (b) \lambda is an eigenvalue \iff \exists v\in V such that Tv=\lambda v\iff \exists v\in V, v\neq 0, (T-\lambda I)v=0
Example:
T(x,y)=(-y,x) what are the eigenvalues of T.
If \mathbb{F}=\mathbb{R} rotation by 90\degree, so no eigenvalues.
what if \mathbb{F}=\mathbb{C}? we can solve the system T(x,y)=\lambda (x,y),(-y,x)=\lambda (x,y)
-y=\lambda x \\
x=\lambda y
So
-1=\lambda ^2,\lambda =\plusmn i
when \lambda =-i, v=(1,i), \lambda=i, v=(1,-i)