113 lines
3.0 KiB
Markdown
113 lines
3.0 KiB
Markdown
# Lecture 18
|
|
|
|
## Chapter III Linear maps
|
|
|
|
**Assumption: $U,V,W$ are vector spaces (over $\mathbb{F}$)**
|
|
|
|
### Duality 3F
|
|
|
|
---
|
|
|
|
Review
|
|
|
|
#### Theorem 3.128, 3.130
|
|
|
|
Let $V,W$ be a finite dimensional vector space, $T\in \mathscr{L}(V,W)$
|
|
|
|
a) $null\ T'=(range\ T)^0$, $dim (null\ T')=dim\ null\ T+dim\ W-dim\ V$
|
|
b) $range\ T'=(null\ T)^0$, $dim (range\ T')=dim (range\ T)$
|
|
c) dim(range\ T')= dim(range\ T)
|
|
|
|
---
|
|
|
|
New materials
|
|
|
|
#### Theorem 3.129, 3.131
|
|
|
|
Let $V,W$ be a finite dimensional vector space, $T\in \mathscr{L}(V,W)$
|
|
|
|
a) $T$ is injective $\iff T'$ is surjective
|
|
b) $T$ is surjective $\iff T'$ is injective
|
|
|
|
Proof:
|
|
|
|
$T$ is injective $\iff null\ T=\{0\}\iff range\ T'=V'\iff T'$ surjective
|
|
|
|
$T$ is surjective $\iff range\ T=W\iff null\ T'=0\iff T'$ injective
|
|
|
|
#### Theorem 3.132
|
|
|
|
Let $V,W$ be a finite dimensional vector space, $T\in \mathscr{L}(V,W)$
|
|
|
|
Then $M(T')=(M(T))^\top$. Where the basis for $M(T)'$ are the dual basis to the ones for $M(T)$
|
|
|
|
#### Theorem 3.133
|
|
|
|
$col\ rank\ A=row\ rank\ A$
|
|
|
|
Proof: $col\ rank\ A=col\ rank\ (M(T))=dim\ range\ T=dim\ range\ T'=dim\ range\ T'=col\ rank\ (M(T'))=col\ rank\ (M(T)^\top)=row\ rank\ (M(T))$
|
|
|
|
## Chapter V Eigenvalue and Eigenvectors
|
|
|
|
### Invariant Subspaces 5A
|
|
|
|
Goal: Study maps in $\mathscr{L}(V)$ (linear operations)
|
|
|
|
Question: Given $T\in \mathscr{L}(V)$ when can I restrict to $U\subseteq V$ such that $T\vert_U\in \mathscr{L}(U)$
|
|
|
|
#### Definition 5.2
|
|
|
|
Suppose $T\in \mathscr{L}(V)$ and $U\subseteq V$ a subspace is said to be invariant under $T$ if $Tu\in U,\forall u\in U$
|
|
|
|
Example:
|
|
|
|
For any $T\in \mathscr{L}(V)$, the following are invariance subspaces.
|
|
|
|
1. $\{0\}$
|
|
2. $V$
|
|
3. $null\ T$, $v\in null\ T\implies Tv=0\in null\ T$
|
|
4. $range\ T$, $v\in range\ T\subseteq V \implies Tv\in range\ T$
|
|
|
|
#### Definition 5.5
|
|
|
|
Suppose $T\in\mathscr{L}(V)$, then for $\lambda \in \mathbb{F}$ is an **eigenvalue** of $T$ if $\exists v\in V$ such that $v\neq 0$ and $Tv=\lambda v$.
|
|
|
|
#### Definition 5.8
|
|
|
|
Suppose $T\in\mathscr{L}(V)$ and $\lambda \in \mathbb{F}$ is an eigenvalue of $T$. The $v\in V$ is an **eigenvector** of $T$ corresponding to $\lambda$ if $v\neq 0$ and $Tv=\lambda v$
|
|
|
|
Note: if $\lambda$ is an eigenvalue of $T$ and $v$ an eigenvector corresponding to $\lambda$, then $U=Span(V)$ is an invariant subspace. and $T\vert_U$ is multiplication by $\lambda$
|
|
|
|
#### Proposition 5.7
|
|
|
|
$V$ is finite dimensional $T\in \mathscr{L},\lambda\in \mathbb{F}$ then the following are equivalent: (TFAE)
|
|
|
|
a) $\lambda$ is an eigenvalue
|
|
b) $T-\lambda I$ is not injective
|
|
c) $T-\lambda I$ is not surjective
|
|
d) $T-\lambda I$ is not invertible
|
|
|
|
Proof:
|
|
|
|
(a)$\iff$ (b) $\lambda$ is an eigenvalue $\iff \exists v\in V$ such that $Tv=\lambda v\iff \exists v\in V, v\neq 0, (T-\lambda I)v=0$
|
|
|
|
Example:
|
|
|
|
$T(x,y)=(-y,x)$ what are the eigenvalues of $T$.
|
|
|
|
If $\mathbb{F}=\mathbb{R}$ rotation by $90\degree$, so no eigenvalues.
|
|
|
|
what if $\mathbb{F}=\mathbb{C}$? we can solve the system $T(x,y)=\lambda (x,y),(-y,x)=\lambda (x,y)$
|
|
|
|
$$
|
|
-y=\lambda x \\
|
|
x=\lambda y
|
|
$$
|
|
|
|
So
|
|
|
|
$$
|
|
-1=\lambda ^2,\lambda =\plusmn i
|
|
$$
|
|
|
|
when $\lambda =-i$, $v=(1,i)$, $\lambda=i$, $v=(1,-i)$ |