100 lines
2.4 KiB
Markdown
100 lines
2.4 KiB
Markdown
# CSE510 Deep Reinforcement Learning (Lecture 19)
|
|
|
|
## Model learning with high-dimensional observations
|
|
|
|
- Learning model in a latent space with observation reconstruction
|
|
- Learning model in a latent space without reconstruction
|
|
|
|
### Learn in Latent Space: Dreamer
|
|
|
|
Learning embedding of images & dynamics model (jointly)
|
|
|
|

|
|
|
|
Representation model: $p_\theta(s_t|s_{t-1}, a_{t-1}, o_t)$
|
|
|
|
Observation model: $q_\theta(o_t|s_t)$
|
|
|
|
Reward model: $q_\theta(r_t|s_t)$
|
|
|
|
Transition model: $q_\theta(s_t| s_{t-1}, a_{t-1})$.
|
|
|
|
Variational evidence lower bound (ELBO) objective:
|
|
|
|
$$
|
|
\mathcal{J}_{REC}\doteq \mathbb{E}_{p}\left(\sum_t(\mathcal{J}_O^t+\mathcal{J}_R^t+\mathcal{J}_D^t)\right)
|
|
$$
|
|
|
|
where
|
|
|
|
$$
|
|
\mathcal{J}_O^t\doteq \ln q(o_t|s_t)
|
|
$$
|
|
|
|
$$
|
|
\mathcal{J}_R^t\doteq \ln q(r_t|s_t)
|
|
$$
|
|
|
|
$$
|
|
\mathcal{J}_D^t\doteq -\beta \operatorname{KL}(p(s_t|s_{t-1}, a_{t-1}, o_t)||q(s_t|s_{t-1}, a_{t-1}))
|
|
$$
|
|
|
|
#### More versions for Dreamer
|
|
|
|
Latest is V3, [link to the paper](https://arxiv.org/pdf/2301.04104)
|
|
|
|
### Learn in Latent Space
|
|
|
|
- Pros
|
|
- Learn visual skill efficiently (using relative simple networks)
|
|
- Cons
|
|
- Using autoencoder might not recover the right representation
|
|
- Not necessarily suitable for model-based methods
|
|
- Embedding is often not a good state representation without using history observations
|
|
|
|
### Planning with Value Prediction Network (VPN)
|
|
|
|
Idea: generating trajectories by following $\epsilon$-greedy policy based on the planning method
|
|
|
|
Q-value calculated from $d$-step planning is defined as:
|
|
|
|
$$
|
|
Q_\theta^d(s,o)=r+\gamma V_\theta^{d}(s')
|
|
$$
|
|
|
|
$$
|
|
V_\theta^{d}(s)=\begin{cases}
|
|
V_\theta(s) & \text{if } d=1\\
|
|
\frac{1}{d}V_\theta(s)+\frac{d-1}{d}\max_{o} Q_\theta^{d-1}(s,o)& \text{if } d>1
|
|
\end{cases}
|
|
$$
|
|
|
|

|
|
|
|
Given an n-step trajectory $x_1, o_1, r_1, \gamma_1, x_2, o_2, r_2, \gamma_2, ..., x_{n+1}$ generated by the $\epsilon$-greedy policy, k-step predictions are defined as follows:
|
|
|
|
$$
|
|
s_t^k=\begin{cases}
|
|
f^{enc}_\theta(x_t) & \text{if } k=0\\
|
|
f^{trans}_\theta(s_{t-1}^{k-1},o_{t-1}) & \text{if } k>0
|
|
\end{cases}
|
|
$$
|
|
|
|
$$
|
|
v_t^k=f^{value}_\theta(s_t^k)
|
|
$$
|
|
|
|
$$
|
|
r_t^k,\gamma_t^k=f^{out}_\theta(s_t^{k-1},o_t)
|
|
$$
|
|
|
|
$$
|
|
\mathcal{L}_t=\sum_{l=1}^k(R_t-v_t^l)^2+(r_t-r_t^l)^2+(\gamma_t-\gamma_t^l)^2\text{ where } R_t=\begin{cases}
|
|
r_t+\gamma_t R_{t+1} & \text{if } t\leq n\\
|
|
\max_{o} Q_{\theta-}^d(s_{n+1},o)& \text{if } t=n+1
|
|
\end{cases}
|
|
$$
|
|
|
|
### MuZero
|
|
|
|
beats AlphaZero |