Files
NoteNextra-origin/pages/Math416/Math416_L4.md
2025-02-04 22:01:50 -06:00

7.9 KiB

Lecture 4

Review

Derivative of a complex function


\frac{\partial f}{\partial z}=\frac{1}{2}\left(\frac{\partial f}{\partial x}-\frac{\partial f}{\partial y}\right)

\frac{\partial f}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}\right)

Angle between two curves

Let \gamma_1,\gamma_2 be two curves in G\subset \mathbb{C} with \gamma_1(t_0)=\gamma_2(t_0)=\zeta_0 for some t_0\in I_1\cap I_2.

The angle between \gamma_1 and \gamma_2 at \zeta_0 is the angle between the vectors \gamma_1'(t_0) and \gamma_2'(t_0). Denote as \arg(\gamma_2'(t_0))-\arg(\gamma_1'(t_0))=\arg(\gamma_2'(t_0)\gamma_1'(t_0)).

Cauchy-Riemann equations


\frac{\partial f}{\partial z}=\frac{1}{2}\left(\frac{\partial f}{\partial x}-\frac{\partial f}{\partial y}\right)

Continue on last lecture

Theorem of conformality

Suppose f:G\to \mathbb{C} is holomorphic function on open set G\subset \mathbb{C} and \gamma_1,\gamma_2 are regular curves in G with \gamma_1(t_0)=\gamma_2(t_0)=\zeta_0 for some t_0\in I_1\cap I_2.

If f'(\zeta_0)\neq 0, then the angle between \gamma_1 and \gamma_2 at \zeta_0 is the same as the angle between the vectors f'(\zeta_0)\gamma_1'(t_0) and f'(\zeta_0)\gamma_2'(t_0).

Lemma of function of a curve and angle

If f:G\to \mathbb{C} is holomorphic function on open set G\subset \mathbb{C} and \gamma is differentiable curve in G with \gamma(t_0)=\zeta_0 for some t_0\in I.

Then,


(f\circ \gamma)'(t_0)=f'(\gamma(t_0))\gamma'(t_0).

Looks like the chain rule.

Proof:

We want to show that


\lim_{t\to t_0}\frac{(f\circ \gamma)(t)-(f\circ \gamma)(t_0)}{t-t_0}=f'(\gamma(t_0))\gamma'(t_0).

Notation:

A function g(h) is O(h) if \exists C>0 such that |g(h)|\leq C|h| for all h in a neighborhood of 0.

A function g(h) is o(h) if \lim_{h\to 0}\frac{g(h)}{h}=0.

f is differentiable if and only if f(z+h)=f(z)+f'(z)h+\frac{1}{2}h^2f''(z)+o(h^3) as h\to 0.

Since f is holomorphic at \gamma(t_0)=\zeta_0, we have


f(\zeta_0)=f(\zeta_0)+(\zeta-\zeta_0)f'(\zeta_0)+o(\zeta-\zeta_0)

and


f(\gamma(t_0))=f(\gamma(t_0))+f'(\gamma(t_0))(\gamma(t)-\gamma(t_0))+o(\gamma(t)-\gamma(t_0))

So,


\begin{aligned}
\lim_{t\to t_0}\frac{(f\circ \gamma)(t)-(f\circ \gamma)(t_0)}{t-t_0}
&=\lim_{t\to t_0}\frac{\left[f(\gamma(t_0))+f'(\gamma(t_0))(\gamma(t)-\gamma(t_0))+o(\gamma(t)-\gamma(t_0))\right]-f(\gamma(t_0))}{t-t_0} \\
&=\lim_{t\to t_0}\frac{f'(\gamma(t_0))(\gamma(t)-\gamma(t_0))+o(\gamma(t)-\gamma(t_0))}{t-t_0} \\
&=\lim_{t\to t_0}\frac{f'(\gamma(t_0))(\gamma(t)-\gamma(t_0))}{t-t_0} +\lim_{t\to t_0}\frac{o(\gamma(t)-\gamma(t_0))}{t-t_0} \\
&=f'(\gamma(t_0))\lim_{t\to t_0}\frac{\gamma(t)-\gamma(t_0)}{t-t_0} +0\\
&=f'(\gamma(t_0))\gamma'(t_0)
\end{aligned}

EOP

Definition of conformal function

A function f:G\to \mathbb{C} is called conformal if it preserves the angle between two curves.

Theorem of conformal function

If f:G\to \mathbb{C} is holomorphic function on open set G\subset \mathbb{C} and \gamma_1,\gamma_2 are regular curves in G with \gamma_1(t_0)=\gamma_2(t_0)=\zeta_0 for some t_0\in I_1\cap I_2, and f'(\zeta_0)\neq 0, then f is conformal at \zeta_0.

Example:


f(z)=z^2

is not conformal at z=0 because f'(0)=0.

Lemma of conformal function

Suppose f is real differentiable, let a=\frac{\partial f}{\partial \zeta}(\zeta_0), b=\frac{\partial f}{\partial \overline{\zeta}}(\zeta_0).

Let \gamma(t_0)=\zeta_0. Then (f\circ \gamma)'(t_0)=a\gamma'(t_0)+b\overline{\gamma'(t_0)}.

Proof:

f=u+iv, u,v are real differentiable.


a=\frac{\partial f}{\partial \zeta}=\frac{1}{2}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+i\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)

b=\frac{\partial f}{\partial \overline{\zeta}}=\frac{1}{2}\left(\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}\right)+i\frac{1}{2}\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)

\gamma'(t_0)=\frac{d\alpha}{dt}+i\frac{d\beta}{dt}

\overline{\gamma'(t_0)}=\frac{d\beta}{dt}-i\frac{d\alpha}{dt}

\begin{aligned}
(f\circ \gamma)'(t_0)&=\frac{\partial f}{\partial \zeta}(\gamma(t_0))\gamma'(t_0)+\frac{\partial f}{\partial \overline{\zeta}}(\gamma(t_0))\overline{\gamma'(t_0)} \\
&=\left[\frac{1}{2}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+i\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)\right]\left(\frac{d\alpha}{dt}+i\frac{d\beta}{dt}\right)\\
&+\left[\frac{1}{2}\left(\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}\right)+i\frac{1}{2}\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)\right]\left(\frac{d\beta}{dt}-i\frac{d\alpha}{dt}\right) \\
&=\left[\frac{1}{2}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)\frac{d\alpha}{dt}-\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)\frac{d\beta}{dt}\right]\\
&+i\left[\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)\frac{d\alpha}{dt}+\frac{1}{2}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)\frac{d\beta}{dt}\right] \\
&=\left[a+b\right]\frac{d\alpha}{dt}+i\left[a-b\right]\frac{d\beta}{dt} \\
&=\left[u_x+iv_x\right]\frac{d\alpha}{dt}+i\left[v_y-iu_y\right]\frac{d\beta}{dt} \\
&=a\gamma'(t_0)+b\overline{\gamma'(t_0)}
\end{aligned}

EOP

Theorem of differentiability

Let f:G\to \mathbb{C} be holomorphic function on open set G\subset \mathbb{C} and real differentiable. f=u+iv where u,v are real differentiable functions.

Then, f is conformal if and only if f is holomorphic at \zeta_0 and f'(\zeta_0)\neq 0,\forall \zeta_0\in G.

Proof:

Case 1: Suppose f(\zeta)=a\zeta+b\overline{\zeta}, Let b=\frac{\partial f}{\partial \overline{z}}(\zeta). We need to prove a+b\neq 0. So we want b=0 and a\neq 0, other wise f(\mathbb{R})=0.

f:\mathbb{R}\to \{(a+b)t\} is not conformal.

...

Case 2: Immediate consequence of the lemma of conformal function.

EOP

Harmonic function

Let \Omega be a domain in \mathbb{C}. A function u:\Omega\to \mathbb{R}

A domain is a connected open set.

Say g:\Omega\to \mathbb{R} \text{ or } \mathbb{C} is harmonic if it satisfies the Laplace equation


\Delta g=\frac{\partial^2 g}{\partial x^2}+\frac{\partial^2 g}{\partial y^2}=0.

Theorem of harmonic conjugate

Let f=u+iv be holomorphic function on domain \Omega\subset \mathbb{C}. Then u and v are harmonic functions on \Omega.

Proof:


\Delta u=\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=0.

Using the Cauchy-Riemann equations, we have


\frac{\partial^2 u}{\partial x^2}=\frac{\partial^2 v}{\partial x\partial y}, \quad \frac{\partial^2 u}{\partial y^2}=-\frac{\partial^2 v}{\partial y\partial x}.

So,


\Delta u=\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=\frac{\partial^2 v}{\partial x\partial y}-\frac{\partial^2 v}{\partial y\partial x}=0.

EOP

If v is such that f=u+iv is holomorphic on \Omega, then v is called harmonic conjugate of u on \Omega.

Example:


u(x,y)=x^2-y^2

is harmonic on \mathbb{C}.

To find a harmonic conjugate of u on \mathbb{C}, we need to find a function v such that


\frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}=2y, \quad \frac{\partial v}{\partial y}=\frac{\partial u}{\partial x}=2x.

Integrating, we get


v(x,y)=2xy+G(y)

\frac{\partial v}{\partial y}=2x+G'(y)=2x

So,


G'(y)=0 \implies G(y)=C

v(x,y)=2xy+C

is a harmonic conjugate of u on \mathbb{C}.

Combine u and v to get f(x,y)=x^2-y^2+2xyi+C=(x+iy)^2+C=z^2+C, which is holomorphic on \mathbb{C}.