Update Math416_L4.md
This commit is contained in:
@@ -59,9 +59,7 @@ $$
|
||||
> A function $g(h)$ is $o(h)$ if $\lim_{h\to 0}\frac{g(h)}{h}=0$.
|
||||
>
|
||||
> <!---TODO: check after lecture-->
|
||||
> $f$ is differentiable if and only if $f(z+h)=f(z)+f'(z)h+\frac{1}{2}h^2f''(z)+o(h^3)$ as $h\to 0$.
|
||||
|
||||
|
||||
> $f$ is differentiable if and only if $f(z+h)=f(z)+f'(z)h+\frac{1}{2}h^2f''(z)+o(h^3)$ as $h\to 0$.
|
||||
|
||||
Since $f$ is holomorphic at $\gamma(t_0)=\zeta_0$, we have
|
||||
|
||||
|
||||
Reference in New Issue
Block a user