Update Math416_L4.md

This commit is contained in:
Zheyuan Wu
2025-02-04 22:01:50 -06:00
parent 29ab09a045
commit e105e717be

View File

@@ -59,9 +59,7 @@ $$
> A function $g(h)$ is $o(h)$ if $\lim_{h\to 0}\frac{g(h)}{h}=0$.
>
> <!---TODO: check after lecture-->
> $f$ is differentiable if and only if $f(z+h)=f(z)+f'(z)h+\frac{1}{2}h^2f''(z)+o(h^3)$ as $h\to 0$.
> $f$ is differentiable if and only if $f(z+h)=f(z)+f'(z)h+\frac{1}{2}h^2f''(z)+o(h^3)$ as $h\to 0$.
Since $f$ is holomorphic at $\gamma(t_0)=\zeta_0$, we have