240 lines
5.5 KiB
Markdown
240 lines
5.5 KiB
Markdown
# Math416 Lecture 5
|
|
|
|
## Review
|
|
|
|
Let $f$ be a complex function. that maps $\mathbb{R}^2$ to $\mathbb{R}^2$. $f(x+iy)=u(x,y)+iv(x,y)$.
|
|
|
|
$$
|
|
Df(x+iy)=\begin{pmatrix}
|
|
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y}\\
|
|
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
|
|
\end{pmatrix}=\begin{pmatrix}
|
|
\alpha & \beta\\
|
|
\sigma & \delta
|
|
\end{pmatrix}
|
|
$$
|
|
|
|
So,
|
|
|
|
$$
|
|
\begin{aligned}
|
|
\frac{\partial f}{\partial z}&=\frac{1}{2}\left(u_x+v_y\right)-i\frac{1}{2}\left(v_x+u_y\right)\\
|
|
&=\frac{1}{2}\left(\alpha+\delta\right)-i\frac{1}{2}\left(\beta-\sigma\right)\\
|
|
\end{aligned}
|
|
$$
|
|
|
|
$$
|
|
\begin{aligned}
|
|
\frac{\partial f}{\partial \overline{z}}&=\frac{1}{2}\left(u_x+v_y\right)+i\frac{1}{2}\left(v_x+u_y\right)\\
|
|
&=\frac{1}{2}\left(\alpha-\delta\right)+i\frac{1}{2}\left(\beta+\sigma\right)\\
|
|
\end{aligned}
|
|
$$
|
|
|
|
When $f$ is conformal,
|
|
|
|
$$
|
|
Df(x+iy)=\begin{pmatrix}
|
|
\alpha & \beta\\
|
|
-\beta & \alpha
|
|
\end{pmatrix}
|
|
$$
|
|
|
|
So,
|
|
|
|
$$
|
|
\frac{\partial f}{\partial z}=\frac{1}{2}(\alpha+\alpha)+i\frac{1}{2}(\beta+\beta)=a
|
|
$$
|
|
|
|
$$
|
|
\frac{\partial f}{\partial \overline{z}}=\frac{1}{2}(\alpha-\alpha)+i\frac{1}{2}(\beta-\beta)=0
|
|
$$
|
|
|
|
> Less pain to represent a complex function using four real numbers.
|
|
|
|
## Chapter 3: Linear fractional Transformations
|
|
|
|
Let $a,b,c,d$ be complex numbers. such that $ad-bc\neq 0$.
|
|
|
|
The linear fractional transformation is defined as
|
|
|
|
$$
|
|
\phi(z)=\frac{az+b}{cz+d}
|
|
$$
|
|
|
|
If we let $\psi(z)=\frac{ez-f}{-gz+h}$ also be a linear fractional transformation, then $\phi\circ\psi$ is also a linear fractional transformation.
|
|
|
|
New coefficients can be solved by
|
|
|
|
$$
|
|
\begin{pmatrix}
|
|
a & b\\
|
|
c & d
|
|
\end{pmatrix}
|
|
\begin{pmatrix}
|
|
e & f\\
|
|
g & h
|
|
\end{pmatrix}
|
|
=
|
|
\begin{pmatrix}
|
|
k&l\\
|
|
m&n
|
|
\end{pmatrix}
|
|
$$
|
|
|
|
So $\phi\circ\psi(z)=\frac{kz+l}{mz+n}$
|
|
|
|
### Complex projective space
|
|
|
|
$\mathbb{R}P^1$ is the set of lines through the origin in $\mathbb{R}^2$.
|
|
|
|
We defined $(a,b)\sim(c,d),(a,b),(c,d)\in\mathbb{R}^2\setminus\{(0,0)\}$ if $\exists t\neq 0,t\in\mathbb{R}\setminus\{0\}$ such that $(a,b)=t(c,d)$.
|
|
|
|
$R\mathbb{P}^1=S^1\setminus\{\pm x\}\cong S^1$
|
|
|
|
Equivalently,
|
|
|
|
$\mathbb{C}P^1$ is the set of lines through the origin in $\mathbb{C}$.
|
|
|
|
We defined $(a,b)\sim(c,d),(a,b),(c,d)\in\mathbb{C}\setminus\{(0,0)\}$ if $\exists t\neq 0,t\in\mathbb{C}\setminus\{0\}$ such that $(a,b)=(tc,td)$.
|
|
|
|
So, $\forall z\in\mathbb{C}\setminus\{0\}$:
|
|
|
|
If $a\neq 0$, then $(a,b)\sim(1,\frac{b}{a})$.
|
|
|
|
If $a=0$, then $(0,b)\sim(0,-b)$.
|
|
|
|
So, $\mathbb{C}P^1$ is the set of lines through the origin in $\mathbb{C}$.
|
|
|
|
### Linear fractional transformations
|
|
|
|
Let $M=\begin{pmatrix}
|
|
a & b\\
|
|
c & d
|
|
\end{pmatrix}$ be a $2\times 2$ matrix with complex entries. That maps $\mathbb{C}^2$ to $\mathbb{C}^2$.
|
|
|
|
Suppose $M$ is non-singular. Then $ad-bc\neq 0$.
|
|
|
|
If $M\begin{pmatrix}
|
|
z_1\\
|
|
z_2
|
|
\end{pmatrix}=\begin{pmatrix}
|
|
\omega_1\\
|
|
\omega_2
|
|
\end{pmatrix}$, then $M\begin{pmatrix}
|
|
tz_1\\
|
|
tz_2
|
|
\end{pmatrix}=\begin{pmatrix}
|
|
t\omega_1\\
|
|
t\omega_2
|
|
\end{pmatrix}$.
|
|
|
|
So, $M$ induces a map $\phi_M:\mathbb{C}P^1\to\mathbb{C}P^1$ defined by $M\begin{pmatrix}
|
|
z\\
|
|
1
|
|
\end{pmatrix}=\begin{pmatrix}
|
|
\frac{az+b}{cz+d}\\
|
|
1
|
|
\end{pmatrix}$.
|
|
|
|
$\phi_M(z)=\frac{az+b}{cz+d}$.
|
|
|
|
If we let $M_2=\begin{pmatrix}
|
|
e &f\\
|
|
g &h
|
|
\end{pmatrix}$, where $ad-bc\neq 0$ and $eh-fg\neq 0$, then $\phi_{M_2}(z)=\frac{ez+f}{gz+h}$.
|
|
|
|
So, $M_2M_1=\begin{pmatrix}
|
|
a&b\\
|
|
c&d
|
|
\end{pmatrix}\begin{pmatrix}
|
|
e&f\\
|
|
g&h
|
|
\end{pmatrix}=\begin{pmatrix}
|
|
z\\
|
|
1
|
|
\end{pmatrix}$.
|
|
|
|
This also gives $\begin{pmatrix}
|
|
kz+l\\
|
|
mz+n
|
|
\end{pmatrix}\sim\begin{pmatrix}
|
|
\frac{kz+l}{mz+n}\\
|
|
1
|
|
\end{pmatrix}$.
|
|
|
|
So, if $ab-cd\neq 0$, then $\exists M^{-1}$ such that $M_2M_1=I$.
|
|
|
|
So non-constant linear fractional transformations form a group under composition.
|
|
|
|
When do two matrices gives the $t_0$ same linear fractional transformation?
|
|
|
|
$M_2^{-1}M_1=\alpha I$
|
|
|
|
We defined $GL(2,\mathbb{C})$ to be the group of general linear transformations of order 2 over $\mathbb{C}$.
|
|
|
|
This is equivalent to the group of invertible $2\times 2$ matrices over $\mathbb{C}$ under matrix multiplication.
|
|
|
|
Let $F$ be the function that maps $M$ to $\phi_M$.
|
|
|
|
$F:GL(2,\mathbb{C})\to\text{Homeo}(\mathbb{C}P^1)$
|
|
|
|
So the kernel of $F$ is the set of matrices that represent the identity transformation. $\ker F=\left\{\alpha I\right\},\alpha\in\mathbb{C}\setminus\{0\}$.
|
|
|
|
#### Corollary of conformality
|
|
|
|
If $\phi$ is a non-constant linear fractional transformation, then $\phi$ is conformal.
|
|
|
|
<details>
|
|
<summary>Proof</summary>
|
|
|
|
Know that $\phi_0\circ\phi(z)=z$,
|
|
|
|
Then $\phi(z)=\phi_0^{-1}\circ\phi\circ\phi_0(z)$.
|
|
|
|
So $\phi(z)=\frac{az+b}{cz+d}$.
|
|
|
|
$\phi:\mathbb{C}\cup\{\infty\}\to\mathbb{C}\cup\{\infty\}$ which gives $\phi(\infty)=\frac{a}{c}$ and $\phi(-\frac{d}{c})=\infty$.
|
|
|
|
So, $\phi$ is conformal.
|
|
|
|
</details>
|
|
|
|
#### Proposition 3.4 of Fixed points
|
|
|
|
Any non-constant linear fractional transformation except the identity transformation has 1 or 2 fixed points.
|
|
|
|
<details>
|
|
<summary>Proof</summary>
|
|
|
|
Let $\phi(z)=\frac{az+b}{cz+d}$.
|
|
|
|
Case 1: $c=0$
|
|
|
|
Then $\infty$ is a fixed point.
|
|
|
|
Case 2: $c\neq 0$
|
|
|
|
Then $\phi(z)=\frac{az+b}{cz+d}$.
|
|
|
|
The solution of $\phi(z)=z$ is $cz^2+(d-a)z-b=0$.
|
|
|
|
Such solutions are $z=\frac{-(d-a)\pm\sqrt{(d-a)^2+4bc}}{2c}$.
|
|
|
|
So, $\phi$ has 1 or 2 fixed points.
|
|
|
|
</details>
|
|
|
|
#### Proposition 3.5 of triple transitivity
|
|
|
|
If $z_1,z_2,z_3\in\mathbb{C}P^1$ are distinct, then there exists a non-constant linear fractional transformation $\phi$ such that $\phi(z_1)=z_2$ and $\phi(z_3)=\infty$.
|
|
|
|
Proof as homework.
|
|
|
|
#### Theorem 3.8 Preservation of clircles
|
|
|
|
We defined clircle to be a circle or a line.
|
|
|
|
If $\phi$ is a non-constant linear fractional transformation, then $\phi$ maps clircles to clircles.
|
|
|
|
Proof continue on next lecture.
|