4.9 KiB
Lecture 18
Review
Let (s_n) be a sequence in \mathbb{R}, and suppose \limsup_{n\to\infty} s_n=1. Consider the following four sets:
\{n\in\mathbb{N}:s_n>2\}\{n\in\mathbb{N}:s_n<2\}\{n\in\mathbb{N}:s_n>0\}\{n\in\mathbb{N}:s_n<0\}
For each set, determine if the set (1) must be infinite, or (2) must be finite, or (3) could be either finite or infinite, depending on the sequence (s_n).
If \liminf_{n\to\infty} s_n=1, then \lim_{n\to\infty} \sup\{s_n,s_{n+1},s_{n+2},\dots\}=1.
So 1 must be finite, since if it is infinite, then \limsup_{n\to\infty} s_n\geq 2, which contradicts the given \limsup_{n\to\infty} s_n=1.
2 and 3 are infinite.
since \liminf_{n\to\infty} s_n=1, there exists infinitely many n such that 2>s_n>0.
4 could be either finite or infinite.
s_n=(-1)^nis example for 4 being infinite.s_n=1is example for 4 being finite.
Continue on Limit Superior and Limit Inferior
Limit Superior
Definition 3.16
Let (s_n) be a sequence of real numbers.
S^* is the largest possible value that a subsequence of (s_n) can converge to.
(Normally, we need to be careful about the definition of "largest possible value", but in this case it does exist by Theorem 3.7.)
Abbott's definition:
S^*=\limsup_{n\to\infty}\{s_k:k\geq n\}.
Theorem 3.17
Let (s_n) be a sequence of real numbers.
S^* is the unique number satisfying the following:
\forall x<S^*, \{n\in\mathbb{N}:s_n\geq x\}is infinite. (same as saying\forall N\in\mathbb{N},\exists n\geq Nsuch thats_n\geq x)\forall x>S^*,\{n\in\mathbb{N}:s_n\geq x\}is finite. (same as saying\exists N\in\mathbb{N}such thatn\geq N\implies s_n<x)
In other words, S^* is the boundary between when \{n\in\mathbb{N}:s_n\geq x\} is infinite and when it is finite.
Proof:
(a) Case 1: S^*=\infty.
Then \sup E=\infty, so (s_n) is not bounded above.
So \forall x\in\mathbb{R}, \{n\in\mathbb{N}:s_n\geq x\} is infinite.
Case 2: S^*\in\mathbb{R}.
Then S^*=\sup E\in \overline{E}=E, by Theorem 3.7.
So \exists (s_{n_k}) such that s_{n_k}\to S^*.
So \forall x<S^*, \{n\in\mathbb{N}:s_n\geq x\} is infinite.
Case 3: S^*=-\infty: The statement is vacuously true. (\nexists x<-\infty)
(b) We'll prove the contrapositive: If \{n\in\mathbb{N}:s_n\geq x\} is infinite, then S^*\leq x.
Case 1: (s_n) is not bounded above.
Then \exists subsequence (s_{n_k}) such that s_{n_k}\to\infty. Thus S^*=\infty\leq x.
Case 2: (s_n) is bounded above.
Let M be an upper bound for (s_n). Then \{n\in\mathbb{N}:s_n\in[M,x]\} is infinite, by Theorem 3.6 (b) (\exists subsequence (s_{n_k}) in [x,M) and \exists t\in[x,M] such that s_{n_k}\to t. This implies t\in E, so x\leq t\leq S^*).
QED
Theorem 3.19 ("one-sided squeeze theorem")
Let (s_n) and (t_n) be two sequences such that s_n\leq t_n for all n\in\mathbb{N}, then
\limsup_{n\to\infty} s_n\leq \limsup_{n\to\infty} t_n
\liminf_{n\to\infty} s_n\leq \liminf_{n\to\infty} t_n
Proof:
By transitivity of \leq, for all x\in\mathbb{R},
|\{n\in\mathbb{N}:s_n\geq x\}|\leq |\{n\in\mathbb{N}:t_n\geq x\}|
By Theorem 3.17, \{n\in\mathbb{N}:t_n\geq x\} is finite \implies \{n\in\mathbb{N}:s_n\geq x\} is finite.
Thus \limsup_{n\to\infty} s_n\leq \limsup_{n\to\infty} t_n.
QED
Normal squeeze theorem: If
s_n\leq t_n\leq u_nfor alln\in\mathbb{N}, and\lim_{n\to\infty} s_n=\lim_{n\to\infty} u_n=L, then\lim_{n\to\infty} t_n=L.Proof: Exercise, hint:
u_n\to L\implies \limsup_{n\to\infty} u_n=\liminf_{n\to\infty} u_n=L.
Theorem 3.20
Binomial theorem:
(1+x)^n=\sum_{k=0}^n\binom{n}{k}x^k.
Special sequences:
(a) If p>0, then \lim_{n\to\infty}\frac{1}{n^p}=0.
We want to find \frac{1}{n^p}<\epsilon\iff n\geq\frac{1}{\epsilon^{1/p}}.
(b) If p>0, then \lim_{n\to\infty}\sqrt[n]{p}=1.
We want to find \sqrt[n]{p}-1<\epsilon\iff p<(1+\epsilon)^n.
Bernoulli's inequality: for
\epsilon>0,n\in\mathbb{N},(1+\epsilon)^n\geq 1+n\epsilon.
So it's enough to have p<1+n\epsilon
So we can choose N>\frac{p-1}{\epsilon}.
Another way of writing this: Let x_n=\sqrt[n]{p}-1.
Then p=(1+x_n)^n\geq 1+nx_n.
So 0\leq x_n\leq\frac{p-1}{n}.
By the squeeze theorem, x_n\to 0.s
(c) \lim_{n\to\infty}\sqrt[n]{n}=1.
We want to find \sqrt[n]{n}-1<\epsilon\iff n<(1+\epsilon)^n. (this will not work for bernoulli's inequality)
So it's enough to have n<\frac{n(n-1)}{2}\epsilon^2\iff n>1+\frac{2}{\epsilon^2}. So choose N>1+\frac{2}{\epsilon^2}.
(d) If p>0 and \alpha is real, then \lim_{n\to\infty}\frac{n^\alpha}{(1+p)^n}=0.
With binomial theorem, (1+p)^n\geq \binom{n}{k}p^k(k\leq n).
\binom{n}{k}=\frac{n(n-1)(n-2)\cdots(n-k+1)}{k!}.
If n\geq 2k, then n-k+1\geq n-\frac{n}{2}+1\geq\frac{n}{2}.
So \binom{n}{k}\geq\frac{(n/2)^k}{k!}.
Continue on next class.