158 lines
4.9 KiB
Markdown
158 lines
4.9 KiB
Markdown
# Lecture 18
|
|
|
|
## Review
|
|
|
|
Let $(s_n)$ be a sequence in $\mathbb{R}$, and suppose $\limsup_{n\to\infty} s_n=1$. Consider the following four sets:
|
|
|
|
1. $\{n\in\mathbb{N}:s_n>2\}$
|
|
2. $\{n\in\mathbb{N}:s_n<2\}$
|
|
3. $\{n\in\mathbb{N}:s_n>0\}$
|
|
4. $\{n\in\mathbb{N}:s_n<0\}$
|
|
|
|
For each set, determine if the set $(1)$ must be infinite, or $(2)$ must be finite, or $(3)$ could be either finite or infinite, depending on the sequence $(s_n)$.
|
|
|
|
If $\liminf_{n\to\infty} s_n=1$, then $\lim_{n\to\infty} \sup\{s_n,s_{n+1},s_{n+2},\dots\}=1$.
|
|
|
|
So 1 must be finite, since if it is infinite, then $\limsup_{n\to\infty} s_n\geq 2$, which contradicts the given $\limsup_{n\to\infty} s_n=1$.
|
|
|
|
2 and 3 are infinite.
|
|
|
|
since $\liminf_{n\to\infty} s_n=1$, there exists infinitely many $n$ such that $2>s_n>0$.
|
|
|
|
4 could be either finite or infinite.
|
|
|
|
- $s_n=(-1)^n$ is example for 4 being infinite.
|
|
- $s_n=1$ is example for 4 being finite.
|
|
|
|
## Continue on Limit Superior and Limit Inferior
|
|
|
|
### Limit Superior
|
|
|
|
#### Definition 3.16
|
|
|
|
Let $(s_n)$ **be a sequence of real numbers**.
|
|
|
|
$S^*$ is the largest possible value that a subsequence of $(s_n)$ can converge to.
|
|
|
|
(Normally, we need to be careful about the definition of "largest possible value", but in this case it does exist by **Theorem 3.7**.)
|
|
|
|
Abbott's definition:
|
|
|
|
$S^*=\limsup_{n\to\infty}\{s_k:k\geq n\}$.
|
|
|
|
#### Theorem 3.17
|
|
|
|
Let $(s_n)$ **be a sequence of real numbers**.
|
|
|
|
$S^*$ is the unique number satisfying the following:
|
|
|
|
1. $\forall x<S^*, \{n\in\mathbb{N}:s_n\geq x\}$ is infinite. (same as saying $\forall N\in\mathbb{N},\exists n\geq N$ such that $s_n\geq x$)
|
|
2. $\forall x>S^*$, $\{n\in\mathbb{N}:s_n\geq x\}$ is finite. (same as saying $\exists N\in\mathbb{N}$ such that $n\geq N\implies s_n<x$)
|
|
|
|
_In other words, $S^*$ is the boundary between when $\{n\in\mathbb{N}:s_n\geq x\}$ is infinite and when it is finite._
|
|
|
|
Proof:
|
|
|
|
(a) Case 1: $S^*=\infty$.
|
|
|
|
Then $\sup E=\infty$, so $(s_n)$ is not bounded above.
|
|
|
|
So $\forall x\in\mathbb{R}$, $\{n\in\mathbb{N}:s_n\geq x\}$ is infinite.
|
|
|
|
Case 2: $S^*\in\mathbb{R}$.
|
|
|
|
Then $S^*=\sup E\in \overline{E}=E$, by **Theorem 3.7**.
|
|
|
|
So $\exists (s_{n_k})$ such that $s_{n_k}\to S^*$.
|
|
|
|
So $\forall x<S^*$, $\{n\in\mathbb{N}:s_n\geq x\}$ is infinite.
|
|
|
|
Case 3: $S^*=-\infty$: The statement is vacuously true. ($\nexists x<-\infty$)
|
|
|
|
(b) We'll prove the contrapositive: If $\{n\in\mathbb{N}:s_n\geq x\}$ is infinite, then $S^*\leq x$.
|
|
|
|
Case 1: $(s_n)$ is not bounded above.
|
|
|
|
Then $\exists$ subsequence $(s_{n_k})$ such that $s_{n_k}\to\infty$. Thus $S^*=\infty\leq x$.
|
|
|
|
Case 2: $(s_n)$ is bounded above.
|
|
|
|
Let $M$ be an upper bound for $(s_n)$. Then $\{n\in\mathbb{N}:s_n\in[M,x]\}$ is infinite, by **Theorem 3.6 (b)** ($\exists$ subsequence $(s_{n_k})$ in $[x,M)$ and $\exists t\in[x,M]$ such that $s_{n_k}\to t$. This implies $t\in E$, so $x\leq t\leq S^*$).
|
|
|
|
QED
|
|
|
|
#### Theorem 3.19 ("one-sided squeeze theorem")
|
|
|
|
Let $(s_n)$ and $(t_n)$ be two sequences such that $s_n\leq t_n$ for all $n\in\mathbb{N}$, then
|
|
|
|
$$
|
|
\limsup_{n\to\infty} s_n\leq \limsup_{n\to\infty} t_n
|
|
$$
|
|
$$
|
|
\liminf_{n\to\infty} s_n\leq \liminf_{n\to\infty} t_n
|
|
$$
|
|
|
|
Proof:
|
|
|
|
By transitivity of $\leq$, for all $x\in\mathbb{R}$,
|
|
|
|
$$
|
|
|\{n\in\mathbb{N}:s_n\geq x\}|\leq |\{n\in\mathbb{N}:t_n\geq x\}|
|
|
$$
|
|
|
|
By **Theorem 3.17**, $\{n\in\mathbb{N}:t_n\geq x\}$ is finite $\implies$ $\{n\in\mathbb{N}:s_n\geq x\}$ is finite.
|
|
|
|
Thus $\limsup_{n\to\infty} s_n\leq \limsup_{n\to\infty} t_n$.
|
|
|
|
QED
|
|
|
|
> Normal squeeze theorem: If $s_n\leq t_n\leq u_n$ for all $n\in\mathbb{N}$, and $\lim_{n\to\infty} s_n=\lim_{n\to\infty} u_n=L$, then $\lim_{n\to\infty} t_n=L$.
|
|
>
|
|
> Proof: Exercise, hint: $u_n\to L\implies \limsup_{n\to\infty} u_n=\liminf_{n\to\infty} u_n=L$.
|
|
|
|
#### Theorem 3.20
|
|
|
|
> Binomial theorem: $(1+x)^n=\sum_{k=0}^n\binom{n}{k}x^k$.
|
|
|
|
Special sequences:
|
|
|
|
(a) If $p>0$, then $\lim_{n\to\infty}\frac{1}{n^p}=0$.
|
|
|
|
We want to find $\frac{1}{n^p}<\epsilon\iff n\geq\frac{1}{\epsilon^{1/p}}$.
|
|
|
|
(b) If $p>0$, then $\lim_{n\to\infty}\sqrt[n]{p}=1$.
|
|
|
|
We want to find $\sqrt[n]{p}-1<\epsilon\iff p<(1+\epsilon)^n$.
|
|
|
|
> Bernoulli's inequality: for $\epsilon>0,n\in\mathbb{N}$, $(1+\epsilon)^n\geq 1+n\epsilon$.
|
|
|
|
So it's enough to have $p<1+n\epsilon$
|
|
|
|
So we can choose $N>\frac{p-1}{\epsilon}$.
|
|
|
|
Another way of writing this: Let $x_n=\sqrt[n]{p}-1$.
|
|
|
|
Then $p=(1+x_n)^n\geq 1+nx_n$.
|
|
|
|
So $0\leq x_n\leq\frac{p-1}{n}$.
|
|
|
|
By the squeeze theorem, $x_n\to 0$.s
|
|
|
|
(c) $\lim_{n\to\infty}\sqrt[n]{n}=1$.
|
|
|
|
We want to find $\sqrt[n]{n}-1<\epsilon\iff n<(1+\epsilon)^n$. (this will not work for bernoulli's inequality)
|
|
|
|
So it's enough to have $n<\frac{n(n-1)}{2}\epsilon^2\iff n>1+\frac{2}{\epsilon^2}$. So choose $N>1+\frac{2}{\epsilon^2}$.
|
|
|
|
(d) If $p>0$ and $\alpha$ is real, then $\lim_{n\to\infty}\frac{n^\alpha}{(1+p)^n}=0$.
|
|
|
|
With binomial theorem, $(1+p)^n\geq \binom{n}{k}p^k(k\leq n)$.
|
|
|
|
$\binom{n}{k}=\frac{n(n-1)(n-2)\cdots(n-k+1)}{k!}$.
|
|
|
|
If $n\geq 2k$, then $n-k+1\geq n-\frac{n}{2}+1\geq\frac{n}{2}$.
|
|
|
|
So $\binom{n}{k}\geq\frac{(n/2)^k}{k!}$.
|
|
|
|
Continue on next class.
|