Files
NoteNextra-origin/content/Math4111/Math4111_L18.md
2025-07-06 12:40:25 -05:00

158 lines
4.9 KiB
Markdown

# Lecture 18
## Review
Let $(s_n)$ be a sequence in $\mathbb{R}$, and suppose $\limsup_{n\to\infty} s_n=1$. Consider the following four sets:
1. $\{n\in\mathbb{N}:s_n>2\}$
2. $\{n\in\mathbb{N}:s_n<2\}$
3. $\{n\in\mathbb{N}:s_n>0\}$
4. $\{n\in\mathbb{N}:s_n<0\}$
For each set, determine if the set $(1)$ must be infinite, or $(2)$ must be finite, or $(3)$ could be either finite or infinite, depending on the sequence $(s_n)$.
If $\liminf_{n\to\infty} s_n=1$, then $\lim_{n\to\infty} \sup\{s_n,s_{n+1},s_{n+2},\dots\}=1$.
So 1 must be finite, since if it is infinite, then $\limsup_{n\to\infty} s_n\geq 2$, which contradicts the given $\limsup_{n\to\infty} s_n=1$.
2 and 3 are infinite.
since $\liminf_{n\to\infty} s_n=1$, there exists infinitely many $n$ such that $2>s_n>0$.
4 could be either finite or infinite.
- $s_n=(-1)^n$ is example for 4 being infinite.
- $s_n=1$ is example for 4 being finite.
## Continue on Limit Superior and Limit Inferior
### Limit Superior
#### Definition 3.16
Let $(s_n)$ **be a sequence of real numbers**.
$S^*$ is the largest possible value that a subsequence of $(s_n)$ can converge to.
(Normally, we need to be careful about the definition of "largest possible value", but in this case it does exist by **Theorem 3.7**.)
Abbott's definition:
$S^*=\limsup_{n\to\infty}\{s_k:k\geq n\}$.
#### Theorem 3.17
Let $(s_n)$ **be a sequence of real numbers**.
$S^*$ is the unique number satisfying the following:
1. $\forall x<S^*, \{n\in\mathbb{N}:s_n\geq x\}$ is infinite. (same as saying $\forall N\in\mathbb{N},\exists n\geq N$ such that $s_n\geq x$)
2. $\forall x>S^*$, $\{n\in\mathbb{N}:s_n\geq x\}$ is finite. (same as saying $\exists N\in\mathbb{N}$ such that $n\geq N\implies s_n<x$)
_In other words, $S^*$ is the boundary between when $\{n\in\mathbb{N}:s_n\geq x\}$ is infinite and when it is finite._
Proof:
(a) Case 1: $S^*=\infty$.
Then $\sup E=\infty$, so $(s_n)$ is not bounded above.
So $\forall x\in\mathbb{R}$, $\{n\in\mathbb{N}:s_n\geq x\}$ is infinite.
Case 2: $S^*\in\mathbb{R}$.
Then $S^*=\sup E\in \overline{E}=E$, by **Theorem 3.7**.
So $\exists (s_{n_k})$ such that $s_{n_k}\to S^*$.
So $\forall x<S^*$, $\{n\in\mathbb{N}:s_n\geq x\}$ is infinite.
Case 3: $S^*=-\infty$: The statement is vacuously true. ($\nexists x<-\infty$)
(b) We'll prove the contrapositive: If $\{n\in\mathbb{N}:s_n\geq x\}$ is infinite, then $S^*\leq x$.
Case 1: $(s_n)$ is not bounded above.
Then $\exists$ subsequence $(s_{n_k})$ such that $s_{n_k}\to\infty$. Thus $S^*=\infty\leq x$.
Case 2: $(s_n)$ is bounded above.
Let $M$ be an upper bound for $(s_n)$. Then $\{n\in\mathbb{N}:s_n\in[M,x]\}$ is infinite, by **Theorem 3.6 (b)** ($\exists$ subsequence $(s_{n_k})$ in $[x,M)$ and $\exists t\in[x,M]$ such that $s_{n_k}\to t$. This implies $t\in E$, so $x\leq t\leq S^*$).
QED
#### Theorem 3.19 ("one-sided squeeze theorem")
Let $(s_n)$ and $(t_n)$ be two sequences such that $s_n\leq t_n$ for all $n\in\mathbb{N}$, then
$$
\limsup_{n\to\infty} s_n\leq \limsup_{n\to\infty} t_n
$$
$$
\liminf_{n\to\infty} s_n\leq \liminf_{n\to\infty} t_n
$$
Proof:
By transitivity of $\leq$, for all $x\in\mathbb{R}$,
$$
|\{n\in\mathbb{N}:s_n\geq x\}|\leq |\{n\in\mathbb{N}:t_n\geq x\}|
$$
By **Theorem 3.17**, $\{n\in\mathbb{N}:t_n\geq x\}$ is finite $\implies$ $\{n\in\mathbb{N}:s_n\geq x\}$ is finite.
Thus $\limsup_{n\to\infty} s_n\leq \limsup_{n\to\infty} t_n$.
QED
> Normal squeeze theorem: If $s_n\leq t_n\leq u_n$ for all $n\in\mathbb{N}$, and $\lim_{n\to\infty} s_n=\lim_{n\to\infty} u_n=L$, then $\lim_{n\to\infty} t_n=L$.
>
> Proof: Exercise, hint: $u_n\to L\implies \limsup_{n\to\infty} u_n=\liminf_{n\to\infty} u_n=L$.
#### Theorem 3.20
> Binomial theorem: $(1+x)^n=\sum_{k=0}^n\binom{n}{k}x^k$.
Special sequences:
(a) If $p>0$, then $\lim_{n\to\infty}\frac{1}{n^p}=0$.
We want to find $\frac{1}{n^p}<\epsilon\iff n\geq\frac{1}{\epsilon^{1/p}}$.
(b) If $p>0$, then $\lim_{n\to\infty}\sqrt[n]{p}=1$.
We want to find $\sqrt[n]{p}-1<\epsilon\iff p<(1+\epsilon)^n$.
> Bernoulli's inequality: for $\epsilon>0,n\in\mathbb{N}$, $(1+\epsilon)^n\geq 1+n\epsilon$.
So it's enough to have $p<1+n\epsilon$
So we can choose $N>\frac{p-1}{\epsilon}$.
Another way of writing this: Let $x_n=\sqrt[n]{p}-1$.
Then $p=(1+x_n)^n\geq 1+nx_n$.
So $0\leq x_n\leq\frac{p-1}{n}$.
By the squeeze theorem, $x_n\to 0$.s
(c) $\lim_{n\to\infty}\sqrt[n]{n}=1$.
We want to find $\sqrt[n]{n}-1<\epsilon\iff n<(1+\epsilon)^n$. (this will not work for bernoulli's inequality)
So it's enough to have $n<\frac{n(n-1)}{2}\epsilon^2\iff n>1+\frac{2}{\epsilon^2}$. So choose $N>1+\frac{2}{\epsilon^2}$.
(d) If $p>0$ and $\alpha$ is real, then $\lim_{n\to\infty}\frac{n^\alpha}{(1+p)^n}=0$.
With binomial theorem, $(1+p)^n\geq \binom{n}{k}p^k(k\leq n)$.
$\binom{n}{k}=\frac{n(n-1)(n-2)\cdots(n-k+1)}{k!}$.
If $n\geq 2k$, then $n-k+1\geq n-\frac{n}{2}+1\geq\frac{n}{2}$.
So $\binom{n}{k}\geq\frac{(n/2)^k}{k!}$.
Continue on next class.