Files
NoteNextra-origin/content/Math4121/Math4121_L12.md
2025-07-06 12:40:25 -05:00

2.8 KiB

Math4121 Lecture 12

Chapter 7: Uniform Convergence and Integrals

Our goal is to solve problems like this:

Let


s_{n,m}=\frac{m}{m+n}

The different order of computation gives different results:


\lim_{n\to\infty}\lim_{m\to\infty}s_{n,m}=1

\lim_{m\to\infty}\lim_{n\to\infty}s_{n,m}=0

We cannot always switch the order of limits. We cannot also do this on derivatives.

Examples

Example 7.4


f_m(x)=\lim_{n\to\infty}cos(m!x\pi)^{2n}

If cos(m!x\pi)^{2n}=\pm 1, then f_m(x)=1.

If not, then |cos(m!x\pi)^{2n}|<1.


f_m(x)=\begin{cases}
1 & \text{if } m!x\text{ is an integer} \\
0 & \text{if } \text{otherwise}
\end{cases}

This function "raise" the fractions with all denominators less than m.


\lim_{m\to\infty}f_m(x)=
\begin{cases}
1 & \text{if } x\text{ is an rational number} \\
0 & \text{if } \text{otherwise}
\end{cases}

So this function is not Riemann integrable. (show in homework)

But


g_{n,m}(x)=cos(m!x\pi)^{2n}

is continuous, and


\lim_{m\to\infty}\lim_{n\to\infty}g_{n,m}(x)=f(x)

So the function is not Riemann integrable.

Definition 7.7

A sequence of functions \{f_n\} converges uniformly to f on set E if


\forall \epsilon>0, \exists N, \forall n\geq N, \forall x\in E, |f_n(x)-f(x)|<\epsilon

If E is just a point, then it is the common definition of convergence.

If you have uniform convergence, then you can switch the order of limits.

Uniform Convergence and Integrals

Theorem 7.16

Suppose \{f_n\}\in\mathscr{R}(\alpha) on [a,b] that converges uniformly to f on [a,b]. Then f\in\mathscr{R}(\alpha) on [a,b] and


\int_a^b f(x)d\alpha=\lim_{n\to\infty}\int_a^b f_n(x)d\alpha

Proof

Define \epsilon_n=\sup_{x\in[a,b]}|f_n(x)-f(x)|.

By uniform convergence, \epsilon_n\to 0 as n\to\infty.


f_n(x)-\epsilon_n\leq f(x)\leq f_n(x)+\epsilon_n

\int_a^b f_n-\epsilon_nd\alpha\leq\overline{\int_a^b}fd\alpha\leq\int_a^bf_n+\epsilon_nd\alpha

\int_a^b f_n-\epsilon_n d\alpha\leq\underline{\int_a^b}fd\alpha\leq\int_a^b f_n+\epsilon_n d\alpha

So,


0\leq\overline{\int_a^b}fd\alpha-\underline{\int_a^b}fd\alpha\leq\int_a^b \epsilon_n d\alpha+\int_a^b \epsilon_n d\alpha=2\epsilon_n[\alpha(b)-\alpha(a)]

So f\in\mathscr{R}(\alpha) and


\int_a^b fd\alpha\leq \int_a^b f_n d\alpha+\int_a^b \epsilon_n d\alpha\leq \int_a^b fd\alpha+2\epsilon_n d\alpha

So,


\int_a^b fd\alpha-\int_a^b \epsilon_n d\alpha\leq \int_a^b f_n d\alpha\leq \int_a^b fd\alpha+\int_a^b \epsilon_n d\alpha

Since \int_a^b \epsilon_n d\alpha\to 0 as n\to\infty, by the squeeze theorem, we have

by the squeeze theorem, we have


\lim_{n\to\infty}\int_a^b f_nd\alpha=\int_a^b fd\alpha

Key is that $\int_a^b (f-f_n)d\alpha\leq \sup{x\in[a,b]}|f-f_n|(\alpha(b)-\alpha(a))$_