Files
NoteNextra-origin/content/Math4121/Math4121_L12.md
2025-07-06 12:40:25 -05:00

140 lines
2.8 KiB
Markdown

# Math4121 Lecture 12
## Chapter 7: Uniform Convergence and Integrals
Our goal is to solve problems like this:
Let
$$
s_{n,m}=\frac{m}{m+n}
$$
The different order of computation gives different results:
$$
\lim_{n\to\infty}\lim_{m\to\infty}s_{n,m}=1
$$
$$
\lim_{m\to\infty}\lim_{n\to\infty}s_{n,m}=0
$$
We cannot always switch the order of limits. We cannot also do this on derivatives.
### Examples
#### Example 7.4
$$
f_m(x)=\lim_{n\to\infty}cos(m!x\pi)^{2n}
$$
If $cos(m!x\pi)^{2n}=\pm 1$, then $f_m(x)=1$.
If not, then $|cos(m!x\pi)^{2n}|<1$.
$$
f_m(x)=\begin{cases}
1 & \text{if } m!x\text{ is an integer} \\
0 & \text{if } \text{otherwise}
\end{cases}
$$
This function "raise" the fractions with all denominators less than $m$.
$$
\lim_{m\to\infty}f_m(x)=
\begin{cases}
1 & \text{if } x\text{ is an rational number} \\
0 & \text{if } \text{otherwise}
\end{cases}
$$
So this function is not Riemann integrable. (show in homework)
But
$$
g_{n,m}(x)=cos(m!x\pi)^{2n}
$$
is continuous, and
$$
\lim_{m\to\infty}\lim_{n\to\infty}g_{n,m}(x)=f(x)
$$
So the function is not Riemann integrable.
#### Definition 7.7
A sequence of functions $\{f_n\}$ **converges uniformly** to $f$ on set $E$ if
$$
\forall \epsilon>0, \exists N, \forall n\geq N, \forall x\in E, |f_n(x)-f(x)|<\epsilon
$$
If $E$ is just a point, then it is the common definition of convergence.
_If you have uniform convergence, then you can switch the order of limits._
### Uniform Convergence and Integrals
#### Theorem 7.16
Suppose $\{f_n\}\in\mathscr{R}(\alpha)$ on $[a,b]$ that converges uniformly to $f$ on $[a,b]$. Then $f\in\mathscr{R}(\alpha)$ on $[a,b]$ and
$$
\int_a^b f(x)d\alpha=\lim_{n\to\infty}\int_a^b f_n(x)d\alpha
$$
#### Proof
Define $\epsilon_n=\sup_{x\in[a,b]}|f_n(x)-f(x)|$.
By uniform convergence, $\epsilon_n\to 0$ as $n\to\infty$.
$$
f_n(x)-\epsilon_n\leq f(x)\leq f_n(x)+\epsilon_n
$$
$$
\int_a^b f_n-\epsilon_nd\alpha\leq\overline{\int_a^b}fd\alpha\leq\int_a^bf_n+\epsilon_nd\alpha
$$
$$
\int_a^b f_n-\epsilon_n d\alpha\leq\underline{\int_a^b}fd\alpha\leq\int_a^b f_n+\epsilon_n d\alpha
$$
So,
$$
0\leq\overline{\int_a^b}fd\alpha-\underline{\int_a^b}fd\alpha\leq\int_a^b \epsilon_n d\alpha+\int_a^b \epsilon_n d\alpha=2\epsilon_n[\alpha(b)-\alpha(a)]
$$
So $f\in\mathscr{R}(\alpha)$ and
$$
\int_a^b fd\alpha\leq \int_a^b f_n d\alpha+\int_a^b \epsilon_n d\alpha\leq \int_a^b fd\alpha+2\epsilon_n d\alpha
$$
So,
$$
\int_a^b fd\alpha-\int_a^b \epsilon_n d\alpha\leq \int_a^b f_n d\alpha\leq \int_a^b fd\alpha+\int_a^b \epsilon_n d\alpha
$$
Since $\int_a^b \epsilon_n d\alpha\to 0$ as $n\to\infty$, by the squeeze theorem, we have
by the squeeze theorem, we have
$$
\lim_{n\to\infty}\int_a^b f_nd\alpha=\int_a^b fd\alpha
$$
_Key is that $\int_a^b (f-f_n)d\alpha\leq \sup_{x\in[a,b]}|f-f_n|(\alpha(b)-\alpha(a))$_