178 lines
4.4 KiB
Markdown
178 lines
4.4 KiB
Markdown
# CSE559A Lecture 26
|
||
|
||
## Continue on Geometry and Multiple Views
|
||
|
||
### The Essential and Fundamental Matrices
|
||
|
||
#### Math of the epipolar constraint: Calibrated case
|
||
|
||
Recall Epipolar Geometry
|
||
|
||

|
||
|
||
Epipolar constraint:
|
||
|
||
If we set the config for the first camera as the world origin and $[I|0]\begin{pmatrix}y\\1\end{pmatrix}=x$, and $[R|t]\begin{pmatrix}y\\1\end{pmatrix}=x'$, then
|
||
|
||
Notice that $x'\cdot [t\times (Ry)]=0$
|
||
|
||
$$
|
||
x'^\top E x_1 = 0
|
||
$$
|
||
|
||
We denote the constraint defined by the Essential Matrix as $E$.
|
||
|
||
$E x$ is the epipolar line associated with $x$ ($l'=Ex$)
|
||
|
||
$E^\top x'$ is the epipolar line associated with $x'$ ($l=E^\top x'$)
|
||
|
||
$E e=0$ and $E^\top e'=0$ ($x$ and $x'$ don't matter)
|
||
|
||
$E$ is singular (rank 2) and have five degrees of freedom.
|
||
|
||
#### Epipolar constraint: Uncalibrated case
|
||
|
||
If the calibration matrices $K$ and $K'$ are unknown, we can write the epipolar constraint in terms of unknown normalized coordinates:
|
||
|
||
$$
|
||
x'^\top_{norm} E x_{norm} = 0
|
||
$$
|
||
|
||
where $x_{norm}=K^{-1} x$, $x'_{norm}=K'^{-1} x'$
|
||
|
||
$$
|
||
x'^\top_{norm} E x_{norm} = 0\implies x'^\top_{norm} Fx=0
|
||
$$
|
||
|
||
where $F=K'^{-1}EK^{-1}$ is the **Fundamental Matrix**.
|
||
|
||
$$
|
||
(x',y',1)\begin{bmatrix}
|
||
f_{11} & f_{12} & f_{13} \\
|
||
f_{21} & f_{22} & f_{23} \\
|
||
f_{31} & f_{32} & f_{33}
|
||
\end{bmatrix}\begin{pmatrix}
|
||
x\\y\\1
|
||
\end{pmatrix}=0
|
||
$$
|
||
|
||
Properties of $F$:
|
||
|
||
$F x$ is the epipolar line associated with $x$ ($l'=F x$)
|
||
|
||
$F^\top x'$ is the epipolar line associated with $x'$ ($l=F^\top x'$)
|
||
|
||
$F e=0$ and $F^\top e'=0$
|
||
|
||
$F$ is singular (rank two) and has seven degrees of freedom
|
||
|
||
#### Estimating the fundamental matrix
|
||
|
||
Given: correspondences $x=(x,y,1)^\top$ and $x'=(x',y',1)^\top$
|
||
|
||
Constraint: $x'^\top F x=0$
|
||
|
||
$$
|
||
(x',y',1)\begin{bmatrix}
|
||
f_{11} & f_{12} & f_{13} \\
|
||
f_{21} & f_{22} & f_{23} \\
|
||
f_{31} & f_{32} & f_{33}
|
||
\end{bmatrix}\begin{pmatrix}
|
||
x\\y\\1
|
||
\end{pmatrix}=0
|
||
$$
|
||
|
||
**Each pair of correspondences gives one equation (one constraint)**
|
||
|
||
At least 8 pairs of correspondences are needed to solve for the 9 elements of $F$ (The eight point algorithm)
|
||
|
||
We know $F$ needs to be singular/rank 2. How do we force it to be singular?
|
||
|
||
Solution: take SVD of the initial estimate and throw out the smallest singular value
|
||
|
||
$$
|
||
F=U\begin{bmatrix}
|
||
\sigma_1 & 0 \\
|
||
0 & \sigma_2 \\
|
||
0 & 0
|
||
\end{bmatrix}V^\top
|
||
$$
|
||
|
||
## Structure from Motion
|
||
|
||
Not always uniquely solvable.
|
||
|
||
If we scale the entire scene by some factor $k$ and, at the same time, scale the camera matrices by the factor of $1/k$, the projections of the scene points remain exactly the same:
|
||
$x\cong PX =(1/k P)(kX)$
|
||
|
||
Without a reference measurement, it is impossible to recover the absolute scale of the scene!
|
||
|
||
In general, if we transform the scene using a transformation $Q$ and apply the inverse transformation to the camera matrices, then the image observations do not change:
|
||
|
||
$x\cong PX =(P Q^{-1})(QX)$
|
||
|
||
### Types of Ambiguities
|
||
|
||

|
||
|
||
### Affine projection : more general than orthographic
|
||
|
||
A general affine projection is a 3D-to-2D linear mapping plus translation:
|
||
|
||
$$
|
||
P=\begin{bmatrix}
|
||
a_{11} & a_{12} & a_{13} & t_1 \\
|
||
a_{21} & a_{22} & a_{23} & t_2 \\
|
||
0 & 0 & 0 & 1
|
||
\end{bmatrix}=\begin{bmatrix}
|
||
A & t \\
|
||
0^\top & 1
|
||
\end{bmatrix}
|
||
$$
|
||
|
||
In non-homogeneous coordinates:
|
||
|
||
$$
|
||
\begin{pmatrix}
|
||
x\\y\\1
|
||
\end{pmatrix}=\begin{bmatrix}
|
||
a_{11} & a_{12} & a_{13} \\
|
||
a_{21} & a_{22} & a_{23}
|
||
\end{bmatrix}\begin{pmatrix}
|
||
X\\Y\\Z
|
||
\end{pmatrix}+\begin{pmatrix}
|
||
t_1\\t_2
|
||
\end{pmatrix}=AX+t
|
||
$$
|
||
|
||
### Affine Structure from Motion
|
||
|
||
Given: 𝑚 images of 𝑛 fixed 3D points such that
|
||
|
||
$$
|
||
x_{ij}=A_iX_j+t_i, \quad i=1,\dots,m, \quad j=1,\dots,n
|
||
$$
|
||
|
||
Problem: use the 𝑚𝑛 correspondences $x_{ij}$ to estimate 𝑚 projection matrices $A_i$ and translation vectors $t_i$, and 𝑛 points $X_j$
|
||
|
||
The reconstruction is defined up to an arbitrary affine transformation $Q$ (12 degrees of freedom):
|
||
|
||
$$
|
||
\begin{bmatrix}
|
||
A & t \\
|
||
0^\top & 1
|
||
\end{bmatrix}\rightarrow\begin{bmatrix}
|
||
A & t \\
|
||
0^\top & 1
|
||
\end{bmatrix}Q^{-1}, \quad \begin{pmatrix}X_j\\1\end{pmatrix}\rightarrow Q\begin{pmatrix}X_j\\1\end{pmatrix}
|
||
$$
|
||
|
||
How many constraints and unknowns for $m$ images and $n$ points?
|
||
|
||
$2mn$ constraints and $8m + 3n$ unknowns
|
||
|
||
To be able to solve this problem, we must have $2mn \geq 8m+3n-12$ (affine ambiguity takes away 12 dof)
|
||
|
||
E.g., for two views, we need four point correspondences
|
||
|